Non-linear stability for convection with quadratic temperature dependent viscosity

被引:3
|
作者
Vaidya, Ashwin
Wulandana, Rachmadian
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
关键词
energy stability; convection; Navier-Stokes; temperature dependent viscosity;
D O I
10.1002/mma.742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the non-linear stability of convection for a Newtonian fluid heated from below, where the viscosity of the fluid depends upon temperature. We are able to show that for Rayleigh numbers below a certain critical value, Ra-c, the rest state of the fluid and the steady temperature distribution remains non-linearly stable, using the calculations of Diaz and Straughan (Continuum Mech. Thermodyn. 2004; 16:347-352). The central contribution of this paper lies in a simpler proof of non-linear stability, than the ones in the current literature, by use of a suitable maximum principle argument. Copyright (C) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:1555 / 1561
页数:7
相关论文
共 50 条
  • [1] Linear and non-linear stability limits for centrifugal convection in an anisotropic layer
    Saravanan, S.
    Brindha, D.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (01) : 65 - 72
  • [2] Sharp global nonlinear stability for temperature-dependent viscosity convection
    Straughan, B
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2023): : 1773 - 1782
  • [3] A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell
    Masanori Kameyama
    Hiroki Ichikawa
    Arata Miyauchi
    Theoretical and Computational Fluid Dynamics, 2013, 27 : 21 - 40
  • [4] A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell
    Kameyama, Masanori
    Ichikawa, Hiroki
    Miyauchi, Arata
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2013, 27 (1-2) : 21 - 40
  • [6] Computation of non-Newtonian quadratic convection in electro-magneto-hydrodynamic (EMHD) duct flow with temperature-dependent viscosity
    Zhang, Lijun
    Bhatti, Muhammad Mubashir
    Beg, Osman Anwar
    Ellahi, Rahmat
    Oztop, Hakan F.
    ADVANCES IN MECHANICAL ENGINEERING, 2023, 15 (12)
  • [7] Stability analysis of the Rayleigh-Benard convection for a fluid with temperature and pressure dependent viscosity
    Rajagopal, K. R.
    Saccomandi, G.
    Vergori, L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 739 - 755
  • [8] Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity
    K. R. Rajagopal
    G. Saccomandi
    L. Vergori
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 739 - 755
  • [9] Effect of temperature-dependent viscosity on mantle convection
    Lukács Benedek Kuslits
    Márton Pál Farkas
    Attila Galsa
    Acta Geodaetica et Geophysica, 2014, 49 : 249 - 263
  • [10] Effect of temperature-dependent viscosity on mantle convection
    Kuslits, Lukacs Benedek
    Farkas, Marton Pal
    Galsa, Attila
    ACTA GEODAETICA ET GEOPHYSICA, 2014, 49 (03) : 249 - 263