Kolakoski-(3,1) is a (deformed) model set

被引:12
作者
Baake, M
Sing, B
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Ernst Moritz Arndt Univ Greifswald, Inst Math, D-17487 Greifswald, Germany
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2004年 / 47卷 / 02期
关键词
D O I
10.4153/CMB-2004-018-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Unlike the (classical) Kolakoski sequence on the alphabet {1, 2}, its analogue on {1, 3} can be related to a primitive substitution rule. Using this connection, we prove that the corresponding bi-infinite fixed point is a regular generic model set and thus has a pure point diffraction spectrum. The Kolakoski-(3,1) sequence is then obtained as a deformation, without losing the pure point diffraction property.
引用
收藏
页码:168 / 190
页数:23
相关论文
共 35 条
[1]  
[Anonymous], THESIS U TUBINGEN
[2]   Pisot substitutions and Rauzy fractals [J].
Arnoux, P ;
Ito, S .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2001, 8 (02) :181-207
[3]   Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces [J].
Baake, M ;
Moody, RV ;
Schlottmann, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (27) :5755-5765
[4]   Diffraction of weighted lattice subsets [J].
Baake, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04) :483-498
[5]  
BAAKE M, IN PRESS J REINE ANG
[6]  
BAAKE M, 2000, DIRECTIONS MATH QUAS, P1
[7]  
BAAKE M, 2003, DEFORMATION DELONE D
[8]  
BAKKE M, 2002, QUASICRYSTALS, P17
[9]  
Bandt C, 1997, NATO ADV SCI I C-MAT, V489, P45
[10]  
BERNUAU G, 2000, DIRECTIONS MATH QUAS, P43