Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks

被引:20
|
作者
Sezer, Omer Berat [1 ]
Ozbayoglu, Ahmet Murat [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Comp Engn, TR-06560 Ankara, Turkey
关键词
Algorithmic Trading; Computational Intelligence; Convolutional Neural Networks; Deep Learning; Financial Forecasting; Stock Market; MARKET;
D O I
10.31209/2018.100000065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Even though computational intelligence techniques have been extensively utilized in financial trading systems, almost all developed models use the time series data for price prediction or identifying buy-sell points. However, in this study we decided to use 2-D stock bar chart images directly without introducing any additional time series associated with the underlying stock. We propose a novel algorithmic trading model CNN-BI (Convolutional Neural Network with Bar Images) using a 2-D Convolutional Neural Network. We generated 2-D images of sliding windows of 30-day bar charts for Dow 30 stocks and trained a deep Convolutional Neural Network (CNN) model for our algorithmic trading model. We tested our model separately between 2007-2012 and 2012-2017 for representing different market conditions. The results indicate that the model was able to outperform Buy and Hold strategy, especially in trendless or bear markets. Since this is a preliminary study and probably one of the first attempts using such an unconventional approach, there is always potential for improvement. Overall, the results are promising and the model might be integrated as part of an ensemble trading model combined with different strategies.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 50 条
  • [31] Deep learning of human posture image classification using convolutional neural networks
    Rababaah, Aaron Rasheed
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (03) : 273 - 288
  • [32] Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks
    Fernandez-Campos, Mariela
    Huang, Yu-Ting
    Jahanshahi, Mohammad R.
    Wang, Tao
    Jin, Jian
    Telenko, Darcy E. P.
    Gongora-Canul, Carlos
    Cruz, C. D.
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [33] Using Convolutional Neural Networks and Raw Data to Model Intraday Trading Market Behaviour
    Milke, Vitaliy
    Luca, Cristina
    Wilson, George
    Fatima, Arooj
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 224 - 231
  • [34] DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks
    Li, Changling
    Zhao, Hang
    Lu, Wei
    Leng, Xiaochang
    Wang, Li
    Lin, Xintan
    Pan, Yibin
    Jiang, Wenbing
    Jiang, Jun
    Sun, Yong
    Wang, Jianan
    Xiang, Jianping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [35] Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
    Wan, Renzhuo
    Mei, Shuping
    Wang, Jun
    Liu, Min
    Yang, Fan
    ELECTRONICS, 2019, 8 (08)
  • [36] A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction
    Schlemper, Jo
    Caballero, Jose
    Hajnal, Joseph V.
    Price, Anthony
    Rueckert, Daniel
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 647 - 658
  • [37] Pornographic image detection utilizing deep convolutional neural networks
    Nian, Fudong
    Li, Teng
    Wang, Yan
    Xu, Mingliang
    Wu, Jun
    NEUROCOMPUTING, 2016, 210 : 283 - 293
  • [38] Residual learning of deep convolutional neural networks for image denoising
    Shan, Chuanhui
    Guo, Xirong
    Ou, Jun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2809 - 2818
  • [39] Nonlinear time series classification using bispectrum-based deep convolutional neural networks
    Parker, Paul A.
    Holan, Scott H.
    Ravishanker, Nalini
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2020, 36 (05) : 877 - 890
  • [40] dCNN/dCAM: anomaly precursors discovery in multivariate time series with deep convolutional neural networks
    Boniol, Paul
    Meftah, Mohammed
    Remy, Emmanuel
    Didier, Bruno
    Palpanas, Themis
    DATA-CENTRIC ENGINEERING, 2023, 4