Invariance principle for the random conductance model with dynamic bounded conductances

被引:20
|
作者
Andres, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Random conductance model; Dynamic environment; Invariance principle; Ergodic; Corrector; Point of view of the particle; Stochastic interface model; PHI INTERFACE MODEL; TIME RANDOM ENVIRONMENT; RANDOM-WALK; PERCOLATION CLUSTERS; LIMIT-THEOREM; FUNCTIONALS;
D O I
10.1214/12-AIHP527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a continuous time random walk X in an environment of dynamic random conductances in Z(d). We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X, and obtain Green's functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
引用
收藏
页码:352 / 374
页数:23
相关论文
共 50 条