Invariance principle for the random conductance model with dynamic bounded conductances

被引:20
作者
Andres, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Random conductance model; Dynamic environment; Invariance principle; Ergodic; Corrector; Point of view of the particle; Stochastic interface model; PHI INTERFACE MODEL; TIME RANDOM ENVIRONMENT; RANDOM-WALK; PERCOLATION CLUSTERS; LIMIT-THEOREM; FUNCTIONALS;
D O I
10.1214/12-AIHP527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a continuous time random walk X in an environment of dynamic random conductances in Z(d). We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X, and obtain Green's functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
引用
收藏
页码:352 / 374
页数:23
相关论文
共 50 条
  • [21] Strong invariance principle for a counterbalanced random walk
    Tan, Hui-qun
    Hu, Zhi-shui
    Dong, Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 370 - 380
  • [22] Random mass splitting and a quenched invariance principle
    Banerjee, Sayan
    Hoffman, Christopher
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (02) : 608 - 627
  • [23] Lyapunov function for power systems with transfer conductances: Extension of the invariance principle
    Bretas, NG
    Alberto, LFC
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 1815 - 1815
  • [24] The invariance principle for associated random fields
    Kim, TS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1443 - 1454
  • [25] Invariance principle for diffusions in random environment
    Struckmeier, S.
    CONDENSED MATTER PHYSICS, 2008, 11 (02) : 275 - 282
  • [26] THE INVARIANCE PRINCIPLE FOR RANDOM SUMS OF A DOUBLE RANDOM SEQUENCE
    Gao, Zhenlong
    Fang, Liang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) : 1539 - 1554
  • [27] Trapping in the Random Conductance Model
    Biskup, M.
    Louidor, O.
    Rozinov, A.
    Vandenberg-Rodes, A.
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (01) : 66 - 87
  • [28] An invariance principle for random walk bridges conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 32
  • [29] Trapping in the Random Conductance Model
    M. Biskup
    O. Louidor
    A. Rozinov
    A. Vandenberg-Rodes
    Journal of Statistical Physics, 2013, 150 : 66 - 87
  • [30] Quenched invariance principle for simple random walk on percolation clusters
    Noam Berger
    Marek Biskup
    Probability Theory and Related Fields, 2007, 137 : 83 - 120