Invariance principle for the random conductance model with dynamic bounded conductances

被引:21
作者
Andres, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Random conductance model; Dynamic environment; Invariance principle; Ergodic; Corrector; Point of view of the particle; Stochastic interface model; PHI INTERFACE MODEL; TIME RANDOM ENVIRONMENT; RANDOM-WALK; PERCOLATION CLUSTERS; LIMIT-THEOREM; FUNCTIONALS;
D O I
10.1214/12-AIHP527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a continuous time random walk X in an environment of dynamic random conductances in Z(d). We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X, and obtain Green's functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
引用
收藏
页码:352 / 374
页数:23
相关论文
共 29 条
[1]   Invariance principle for the random conductance model [J].
Andres, S. ;
Barlow, M. T. ;
Deuschel, J. -D. ;
Hambly, B. M. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) :535-580
[2]  
[Anonymous], 1986, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics
[3]  
Bandyopadhyay A., 2006, ALEA Lat. Am. J. Probab. Math. Stat., V1, P205
[4]   INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES [J].
Barlow, M. T. ;
Deuschel, J-D. .
ANNALS OF PROBABILITY, 2010, 38 (01) :234-276
[5]  
Barlow MT, 2009, ELECTRON J PROBAB, V14
[6]   Quenched invariance principle for simple random walk on percolation clusters [J].
Berger, Noam ;
Biskup, Marek .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) :83-120
[7]   Functional CLT for random walk among bounded random conductances [J].
Biskup, Marek ;
Prescott, Timothy M. .
ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 :1323-1348
[8]   Recent progress on the Random Conductance Model [J].
Biskup, Marek .
PROBABILITY SURVEYS, 2011, 8 :294-373
[9]  
Bodineau T, 2012, MARKOV PROCESS RELAT, V18, P71
[10]   Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive [J].
Boldrighini, C ;
Minlos, RA ;
Pellegrinotti, A .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (01) :133-156