The importance of edges in reactive ion etched graphene nanodevices

被引:10
作者
Bischoff, Dominik [1 ]
Simonet, Pauline [1 ]
Varlet, Anastasia [1 ]
Overweg, Hiske C. [1 ]
Eich, Marius [1 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2016年 / 10卷 / 01期
基金
瑞士国家科学基金会;
关键词
graphene; nanoribbons; quantum dots; edges; disorder; BALLISTIC TRANSPORT; QUANTUM; NANORIBBONS; CONFINEMENT; FABRICATION; GROWTH; ZIGZAG; STATE;
D O I
10.1002/pssr.201510163
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Patterned graphene nanodevices are promising candidates for nano-and quantum-electronics. Low temperature electronic transport in reactive ion etched graphene nanodevices is typically governed by charge localization manifesting itself in the appearance of Coulomb blockade. The disorder originating from non-perfect graphene edges was identified as being the dominant reason for the stochastic charge localization in graphene nanoribbons. It was found that electrons can localize along the edges on length scales much longer than the physical disorder length. Such states localized along the edge can even leak out of the nanoribbon into adjacent wide graphene leads suggesting that a possibly existing confinement gap is not required to explain transport properties of etched graphene nanodevices. These insights are then used to improve the understanding of transport in graphene quantum dots where Coulomb blockade is typically more regular than in nanoribbons. It is shown that non-overlapping Coulomb diamonds can be observed even in a regime where three states of localized charge need to be passed in series by an electron traveling from source to drain contact. This counter-intuitive observation is explained by higher order co-tunneling through the localized states in the nanoribbons connecting the graphene dot to the leads. [GRAPHICS] (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:68 / 74
页数:7
相关论文
共 53 条
[1]   Gate-defined quantum confinement in suspended bilayer graphene [J].
Allen, M. T. ;
Martin, J. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2012, 3
[2]   Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects [J].
Areshkin, Denis A. ;
Gunlycke, Daniel ;
White, Carter T. .
NANO LETTERS, 2007, 7 (01) :204-210
[3]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[4]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[5]   Localized charge carriers in graphene nanodevices [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Eich, M. ;
Overweg, H. C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS REVIEWS, 2015, 2 (03)
[6]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[7]   Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Ihn, T. ;
Ensslin, K. .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]   Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate [J].
Bischoff, D. ;
Kraehenmann, T. ;
Droescher, S. ;
Gruner, M. A. ;
Barraud, C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS LETTERS, 2012, 101 (20)
[9]   Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers [J].
Britnell, Liam ;
Gorbachev, Roman V. ;
Jalil, Rashid ;
Belle, Branson D. ;
Schedin, Fred ;
Katsnelson, Mikhail I. ;
Eaves, Laurence ;
Morozov, Sergey V. ;
Mayorov, Alexander S. ;
Peres, Nuno M. R. ;
Castro Neto, Antonio H. ;
Leist, Jon ;
Geim, Andre K. ;
Ponomarenko, Leonid A. ;
Novoselov, Kostya S. .
NANO LETTERS, 2012, 12 (03) :1707-1710
[10]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473