model error;
localization;
4DEnVar;
observation density;
covariance;
additive inflation;
VARIATIONAL DATA ASSIMILATION;
KALMAN FILTER;
PART I;
EQUIVALENCE;
SCHEME;
D O I:
10.1002/qj.2135
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
Three data assimilation methods are compared for their ability to produce the best analysis: (i) 4DVar, four-dimensional variational data assimilation using linear and adjoint models with either a (perfect) 3D climatological background-error covariance or a 3D ensemble background-error covariance; (ii) EDA, an ensemble of 4DEnVars, which is a variational method using a 4D ensemble covariance; and (iii) the deterministic ensemble Kalman filter (DEnKF, also using a 4D ensemble covariance). The accuracy of the deterministic analysis from each method was measured for both perfect and imperfect toy model experiments. With a perfect model, 4DVar with the climatological covariance is easily beaten by the ensemble methods, due to the importance of flow-dependent background-error covariances. When model error is present, 4DVar is more competitive and its relative performance is improved by increasing the observation density. This is related to the model error representation in the background-error covariance. The dynamical time-consistency of the 4D ensemble background-error covariance is degraded by the localization, since the localization function and the nonlinear model do not commute. As a result, 4DVar with the ensemble covariance performs significantly better than the other ensemble methods when severe localization is required, i.e. for a small ensemble.
机构:
Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
Univ New Orleans, New Orleans, LA 70148 USAOregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
Pasmans, Ivo
Kurapov, Alexander L.
论文数: 0引用数: 0
h-index: 0
机构:
Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
NOAA, Coast Survey Dev Lab, Silver Spring, MD USAOregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
机构:
Chinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
Tian, Xiangjun
Zhang, Hongqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
Zhang, Hongqin
Feng, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAChinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
Feng, Xiaobing
Xie, Yuanfu
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, Earth Syst Res Lab, Boulder, CO USAChinese Acad Sci, Inst Atmospher Phys, ICCES, Beijing, Peoples R China
机构:
China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
Xiao, Hongyi
Han, Wei
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
Han, Wei
Wang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
Wang, Hao
Wang, Jincheng
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
Wang, Jincheng
Liu, Guiqing
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
Liu, Guiqing
Xu, Changshan
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Meteorol Bur, Taian City Meteorol Bur, Tai An 271000, Shandong, Peoples R ChinaChina Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China