Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation

被引:75
作者
Abanov, Alexander G. [1 ]
Bettelheim, Eldad [2 ]
Wiegmann, Paul [3 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; COLLECTIVE-FIELD METHOD; LARGE-N LIMIT; INTERNAL WAVES; MATRIX MODELS; ONE DIMENSION; BODY PROBLEM; SOLITONS; TRANSFORM; FLUIDS;
D O I
10.1088/1751-8113/42/13/135201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analog of the Benjamin-Ono equation. The latter is known to describe internal waves of deep stratified fluids. We show that the bidirectional Benjamin-Ono equation appears as a real reduction of the modified KP hierarchy. We derive the chiral nonlinear equation which appears as a chiral reduction of the bidirectional equation. The conventional Benjamin-Ono equation is a degeneration of the chiral nonlinear equation at large density. We construct multi-phase solutions of the bidirectional Benjamin-Ono equations and of the chiral nonlinear equations.
引用
收藏
页数:24
相关论文
共 36 条
[1]   Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model [J].
Abanov, AG ;
Wiegmann, PB .
PHYSICAL REVIEW LETTERS, 2005, 95 (07)
[2]   SOLITONS IN THE CALOGERO-SUTHERLAND COLLECTIVE-FIELD MODEL [J].
ANDRIC, I ;
BARDEK, V ;
JONKE, L .
PHYSICS LETTERS B, 1995, 357 (03) :374-378
[3]   1/N CORRECTIONS IN CALOGERO-TYPE MODELS USING THE COLLECTIVE-FIELD METHOD [J].
ANDRIC, I ;
BARDEK, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (13) :2847-2853
[4]   COLLECTIVE-FIELD METHOD FOR A U(N)-INVARIANT MODEL IN THE LARGE-N LIMIT [J].
ANDRIC, I ;
BARDEK, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01) :353-362
[5]   ON THE LARGE-N LIMIT IN SYMPLECTIC MATRIX MODELS [J].
ANDRIC, I ;
JEVICKI, A ;
LEVINE, H .
NUCLEAR PHYSICS B, 1983, 215 (02) :307-315
[6]  
[Anonymous], 1959, Mathematical Tables and Other Aids to Computation, DOI DOI 10.1090/S0025-5718-1959-0105798-2
[7]  
[Anonymous], 1991, SOLITONS NONLINEAR E
[8]   COLLECTIVE FIELD-THEORY, CALOGERO-SUTHERLAND MODEL AND GENERALIZED MATRIX MODELS [J].
AWATA, H ;
MATSUO, Y ;
ODAKE, S ;
SHIRAISHI, J .
PHYSICS LETTERS B, 1995, 347 (1-2) :49-55
[9]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[10]   Nonlinear quantum shock waves in fractional quantum hall edge states [J].
Bettelheim, E. ;
Abanov, Alexander G. ;
Wiegmann, P. .
PHYSICAL REVIEW LETTERS, 2006, 97 (24)