Enhancing the response of NH3 graphene-sensors by using devices with different graphene-substrate distances

被引:81
作者
Cadore, A. R. [1 ]
Mania, E. [1 ]
Alencar, A. B. [2 ]
Rezende, N. P. [1 ]
de Oliveira, S. [1 ]
Watanabe, K. [2 ]
Taniguchi, T. [3 ]
Chacham, H. [1 ]
Campos, L. C. [1 ]
Lacerda, R. G. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Vales Jequitinhonha & Mucuri, Inst Engn Ciencia & Tecnol, BR-39440000 Janauba, Brazil
[3] Natl Inst Mat Sci, Namiki 3050044, Japan
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2018年 / 266卷
关键词
Ammonia detection; Graphene; Gas sensor; Substrate engineering; GAS; SCATTERING;
D O I
10.1016/j.snb.2018.03.164
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Graphene (G) is a two-dimensional material with exceptional sensing properties. In general, graphene gas sensors are produced in field effect transistor configuration on several substrates. The role of the substrates on the sensor characteristics has not yet been entirely established. To provide further insight on the interaction between ammonia molecules (NH3) and graphene devices, we report experimental and theoretical studies of NH3 graphene sensors with graphene supported on three substrates: SiO2, talc and hexagonal boron nitride (hBN). Our results indicate that the charge transfer from NH3 to graphene depends not only on extrinsic parameters like temperature and gas concentration, but also on the average distance between the graphene sheet and the substrate. We find that the average distance between graphene and hBN crystals is the smallest among the three substrates, and that graphene-ammonia gas sensors based on a G/hBN heterostructure exhibit the fastest recovery times for NH3 exposure and are slightly affected by wet or dry air environment. Moreover, the dependence of graphene-ammonia sensors on different substrates indicates that graphene sensors exhibit two different adsorption processes for NH3 molecules: one at the top of the graphene surface and another at its bottom side close to the substrate. Therefore, our findings show that substrate engineering is crucial to the development of graphene-based gas sensors and indicate additional routes for faster sensors. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 446
页数:9
相关论文
共 50 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass [J].
Alam, A. U. ;
Howlader, M. M. R. ;
Deen, M. J. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (03)
[3]   Experimental and theoretical investigations of monolayer and few-layer talc [J].
Alencar, Ananias B. ;
Barboza, Ana Paula M. ;
Archanjo, Braulio S. ;
Chacham, Helio ;
Neves, Bernardo R. A. .
2D MATERIALS, 2015, 2 (01)
[4]  
[Anonymous], APPL PHYS LETT
[5]  
[Anonymous], APPL PHYS LETT
[6]   Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy [J].
Barcelos, Ingrid D. ;
Cadore, Alisson R. ;
Campos, Leonardo C. ;
Malachias, Angelo ;
Watanabe, K. ;
Taniguchi, T. ;
Maia, Francisco C. B. ;
Freitas, Raul ;
Deneke, Christoph .
NANOSCALE, 2015, 7 (27) :11620-11625
[7]   Metal-graphene heterojunction modulation via H2 interaction [J].
Cadore, A. R. ;
Mania, E. ;
de Morais, E. A. ;
Watanabe, K. ;
Taniguchi, T. ;
Lacerda, R. G. ;
Campos, L. C. .
APPLIED PHYSICS LETTERS, 2016, 109 (03)
[8]   Thermally activated hysteresis in high quality graphene/h-BN devices [J].
Cadore, A. R. ;
Mania, E. ;
Watanabe, K. ;
Taniguchi, T. ;
Lacerda, R. G. ;
Campos, L. C. .
APPLIED PHYSICS LETTERS, 2016, 108 (23)
[9]   Sub-ppt gas detection with pristine graphene [J].
Chen, Gugang ;
Paronyan, Tereza M. ;
Harutyunyan, Avetik R. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[10]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381