The unit of time: Present and future directions

被引:35
作者
Bize, Sebastien [1 ]
机构
[1] Sorbonne Univ, CNRS, Univ PSL, SYRTE,Observ Paris,LNE, 61 Ave Observ, F-75014 Paris, France
关键词
Atomic fountain; Timescale; Optical frequency standard; Fundamental physics test; Chronometric geodesy; Redefinition of the SI second; OPTICAL LATTICE CLOCK; DISTRIBUTED CAVITY PHASE; X 10(-17) UNCERTAINTY; FREQUENCY STANDARD; FIBER LINK; RELATIVISTIC REDSHIFT; ATOMIC FOUNTAIN; NOBEL LECTURE; ACCURACY EVALUATION; GENERAL-RELATIVITY;
D O I
10.1016/j.crhy.2019.02.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Some 50 years ago, physicists, and after them the entire world, started to found their time reference on atomic properties instead of motions of the Earth that have been in use since the origin. Far from being an arrival point, this decision marked the beginning of an adventure characterized by an improvement by 6 orders of magnitude in the uncertainty of realization of atomic frequency and time references. Ever-progressing atomic frequency standards and time references derived from them are key resources for science and for society. We will describe how the unit of time is realized with a fractional accuracy approaching 10(-16) and how it is delivered to users via the elaboration of the international atomic time. We will describe the tremendous progress of optical frequency metrology over the last 20 years that led to a novel generation of optical frequency standards with fractional uncertainties of 10(-18). We will describe work toward a possible redefinition of the SI second based on such standards. We will describe existing and emerging applications of atomic frequency standards in science. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 196 条
[1]   Noise and instability of an optical lattice clock [J].
Al-Masoudi, Ali ;
Doerscher, Soeren ;
Haefner, Sebastian ;
Sterr, Uwe ;
Lisdat, Christian .
PHYSICAL REVIEW A, 2015, 92 (06)
[2]  
[Anonymous], 1983, COMP REND 17E CGPM, P10
[3]  
[Anonymous], 2018, COMPT REND 26E CGPM
[4]   Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers [J].
Ashby, N. ;
Heavner, T. P. ;
Jefferts, S. R. ;
Parker, T. E. ;
Radnaev, A. G. ;
Dudin, Y. O. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[5]   A null test of general relativity based on a long-term comparison of atomic transition frequencies [J].
Ashby, Neil ;
Parker, Thomas E. ;
Patla, Bijunath R. .
NATURE PHYSICS, 2018, 14 (08) :822-+
[6]   Comparison between frequency standards in Europe and the USA at the 10-15 uncertainty level [J].
Bauch, A ;
Achkar, J ;
Bize, S ;
Calonico, D ;
Dach, R ;
Hlavac, R ;
Lorini, L ;
Parker, T ;
Petit, G ;
Piester, D ;
Szymaniec, K ;
Uhrich, P .
METROLOGIA, 2006, 43 (01) :109-120
[7]   Generation of UTC(PTB) as a fountain-clock based time scale [J].
Bauch, A. ;
Weyers, S. ;
Piester, D. ;
Staliuniene, E. ;
Yang, W. .
METROLOGIA, 2012, 49 (03) :180-188
[8]   Attosecond timing in optical-to-electrical conversion [J].
Baynes, Fred N. ;
Quinlan, Franklyn ;
Fortier, Tara M. ;
Zhou, Qiugui ;
Beling, Andreas ;
Campbell, Joe C. ;
Diddams, Scott A. .
OPTICA, 2015, 2 (02) :141-146
[9]   Atomic Clock with 1 x 10-18 Room-Temperature Blackbody Stark Uncertainty [J].
Beloy, K. ;
Hinkley, N. ;
Phillips, N. B. ;
Sherman, J. A. ;
Schioppo, M. ;
Lehman, J. ;
Feldman, A. ;
Hanssen, L. M. ;
Oates, C. W. ;
Ludlow, A. D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[10]   RECOILLESS OPTICAL-ABSORPTION AND DOPPLER SIDE-BAND OF A SINGLE TRAPPED ION [J].
BERGQUIST, JC ;
ITANO, WM ;
WINELAND, DJ .
PHYSICAL REVIEW A, 1987, 36 (01) :428-430