Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites

被引:274
作者
Li, Yifei [1 ,2 ]
Liang, Yanliang [1 ,2 ]
Hernandez, Francisco C. Robles [3 ]
Yoo, Hyun Deog [1 ,2 ]
An, Qinyou [1 ,2 ]
Yao, Yan [1 ,2 ,4 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Univ Houston, Mat Sci & Engn Program, Houston, TX 77204 USA
[3] Univ Houston, Coll Technol, Houston, TX 77204 USA
[4] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
PEO-MoS2; Interlayer spacing; Electrochemical performance; Sodium-ion battery; ELECTROCHEMICAL INTERCALATION; ELECTRODE MATERIALS; ANODE MATERIAL; LITHIUM; LI; DIFFUSION; CONDUCTIVITY; CHALLENGES; STABILITY; CHEMISTRY;
D O I
10.1016/j.nanoen.2015.05.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The larger ionic radius of Na ion (1.06 angstrom) compared with that of Li ion (0.76 angstrom) is a fundamental reason for the inferior diffusion kinetics of Na ion in intercalation hosts. Here we report interlayer expansion of intercalation hosts as a general strategy to facilitate the solid-state diffusion of Na ions. Based on this strategy, poly(ethylene oxide)-intercalated MoS2 composites (PEO-MOS2) were synthesized via a facile exfoliation-restacking method and tested as anode materials for Na-ion batteries (NIBs). The interlayer spacing of MoS2 was increased from 0.615 nm to 1.45 nm by insertion of controlled amounts of PEO. The bilayer PEO-intercalated MOS2 composite (PEO2L-MOS2) exhibits a specific capacity of 225 mA h g(-1) under a current density of 50 mA g(-1), twice as high as that of commercial MoS2 (com-MoS2), and shows improved rate performance due to enhanced Na-ion diffusivity. The improvement in the electrochemical performance demonstrates that interlayer expansion is an effective strategy for the development of high performance electrode materials for battery technologies based on the storage of large ions. Published by Elsevier Ltd.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 54 条
[1]   INTERCALATION POSITIVE ELECTRODES FOR RECHARGEABLE SODIUM CELLS [J].
ABRAHAM, KM .
SOLID STATE IONICS, 1982, 7 (03) :199-212
[2]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Intercalation chemistry of molybdenum disulfide [J].
Benavente, E ;
Santa Ana, MA ;
Mendizábal, F ;
González, G .
COORDINATION CHEMISTRY REVIEWS, 2002, 224 (1-2) :87-109
[6]   Recent Development on Anodes for Na-Ion Batteries [J].
Bommier, Clement ;
Ji, Xiulei .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) :486-507
[7]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[8]   STRUCTURAL STUDIES OF INTERCALATION COMPLEXES TIS2.NH3 AND TAS2.NH3 [J].
CHIANELLI, RR ;
SCANLON, JC ;
WHITTINGHAM, MS ;
GAMBLE, FR .
INORGANIC CHEMISTRY, 1975, 14 (07) :1691-1696
[9]   Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT [J].
Deiss, E .
ELECTROCHIMICA ACTA, 2005, 50 (14) :2927-2932
[10]   ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES [J].
DELMAS, C ;
BRACONNIER, JJ ;
FOUASSIER, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :165-169