Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors

被引:105
作者
Xu, Xiaowei [1 ]
Pei, Liyuan [1 ]
Yang, Yang [1 ]
Shen, Jianfeng [1 ]
Ye, Mingxin [1 ]
机构
[1] Fudan Univ, Ctr Special Mat & Technol, Shanghai 200433, Peoples R China
关键词
Nickel tungstate; Reduced graphene oxide; Supercapacitors; Nanocomposite; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; GRAPHITE OXIDE; FOAM HYBRID; FLOWER-LIKE; NANOPARTICLES; COMPOSITE; ARRAYS; CO3O4; NANOSPHERES;
D O I
10.1016/j.jallcom.2015.09.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiWO4/reduced graphene oxide (NWG) nanocomposite was successfully synthesized through a facile one-pot solvothermal method for the first time. The resulting nanocomposite is composed of NiWO4 nanoparticles that are uniformly attached on graphene sheets by in situ reducing. The as-prepared NWG composite has been systematically characterized by Powder X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectra, and BrunauereEmmetteTeller analysis. The capacitive performances of the as-prepared NWG composite as electrode material are investigated. It is found that the NWG composite exhibits a high specific capacitance up to 1031.3 F g(-1) at a current density of 0.5 A g(-1). The greatly enhanced capacitive performance of the NWG electrode can be attributed to the synergetic effect of NiWO4 nanoparticles and RGO, which provides conducting channels and active sites. The cyclic stability tests demonstrated no decreases of its initial values after 5000 cycles, suggesting that such hybrid electrode possesses a great potential application in energy-storage devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 52 条
[1]   Comparison of the Electrochemical Performance of NiMoO4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications [J].
Cai, Daoping ;
Wang, Dandan ;
Liu, Bin ;
Wang, Yanrong ;
Liu, Yuan ;
Wang, Lingling ;
Li, Han ;
Huang, Hui ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :12905-12910
[2]   Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes [J].
Cao, Chang-Yan ;
Guo, Wei ;
Cui, Zhi-Min ;
Song, Wei-Guo ;
Cai, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) :3204-3209
[3]   Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors [J].
Cao, Hailiang ;
Zhou, Xufeng ;
Zhang, Yiming ;
Chen, Liang ;
Liu, Zhaoping .
JOURNAL OF POWER SOURCES, 2013, 243 :715-720
[4]   Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances [J].
Chen, Liang ;
Zhang, Yu ;
Zhu, Pengli ;
Zhou, Fengrui ;
Zeng, Wenjin ;
Lu, Daoqiang Daniel ;
Sun, Rong ;
Wong, Chingping .
SCIENTIFIC REPORTS, 2015, 5
[5]   Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors [J].
Chen, Yiming ;
Huang, Zidong ;
Zhang, Haiyan ;
Chen, Yuting ;
Cheng, Zhengdong ;
Zhong, Yaobing ;
Ye, Yipeng ;
Lei, Xianling .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) :16171-16178
[6]   Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage [J].
Chen, Zheng ;
Qin, Yaochun ;
Weng, Ding ;
Xiao, Qiangfeng ;
Peng, Yiting ;
Wang, Xiaolei ;
Li, Hexing ;
Wei, Fei ;
Lu, Yunfeng .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (21) :3420-3426
[7]   Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode [J].
Dong, Xiaochen ;
Wang, Xuewan ;
Wang, Ling ;
Song, Hao ;
Li, Xingao ;
Wang, Lianhui ;
Chan-Park, Mary B. ;
Li, Chang Ming ;
Chen, Peng .
CARBON, 2012, 50 (13) :4865-4870
[8]   Carbon-inorganic hybrid materials:: The carbon-nanotube/TiO2 interface [J].
Eder, Dominik ;
Windle, Alan H. .
ADVANCED MATERIALS, 2008, 20 (09) :1787-+
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes [J].
Gao, Lina ;
Wang, Xianfu ;
Xie, Zhong ;
Song, Weifeng ;
Wang, Lijing ;
Wu, Xiang ;
Qu, Fengyu ;
Chen, Di ;
Shen, Guozhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) :7167-7173