Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

被引:37
作者
Rodionov, Dmitry A. [1 ,2 ]
Rodionova, Irina A. [1 ]
Li, Xiaoqing [1 ]
Ravcheev, Dmitry A. [1 ,2 ]
Tarasova, Yekaterina [3 ]
Portnoy, Vasiliy A. [3 ]
Zengler, Karsten [3 ]
Osterman, Andrei L. [1 ]
机构
[1] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA
[2] Russian Acad Sci, AA Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
来源
FRONTIERS IN MICROBIOLOGY | 2013年 / 4卷
基金
俄罗斯基础研究基金会;
关键词
carbohydrate metabolism; transcriptional regulation; regulon; comparative genomics; Thermotoga; GENOMIC-RECONSTRUCTION; UTILIZATION PATHWAY; SP-NOV; SEQUENCE; REGULON; CARBON; TRANSPORTERS; METABOLISM; BACTERIA; GROWTH;
D O I
10.3389/fmicb.2013.00244
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs) and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.
引用
收藏
页数:14
相关论文
共 44 条
[1]  
Balk M, 2002, INT J SYST EVOL MICR, V52, P1361, DOI [10.1099/ijs.0.02165-0, 10.1099/00207713-52-4-1361]
[2]   Ligands of Thermophilic ABC Transporters Encoded in a Newly Sequenced Genomic Region of Thermotoga maritima MSB8 Screened by Differential Scanning Fluorimetry [J].
Boucher, Nathalie ;
Noll, Kenneth M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (18) :6395-6399
[3]   Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides [J].
Chhabra, SR ;
Shockley, KR ;
Ward, DE ;
Kelly, RM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (02) :545-554
[4]   Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima [J].
Chhabra, SR ;
Shockley, KR ;
Conners, SB ;
Scott, KL ;
Wolfinger, RD ;
Kelly, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (09) :7540-7552
[5]   An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima [J].
Conners, SB ;
Montero, CI ;
Comfort, DA ;
Shockley, KR ;
Johnson, MR ;
Chhabra, SR ;
Kelly, RM .
JOURNAL OF BACTERIOLOGY, 2005, 187 (21) :7267-7282
[6]   Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species [J].
Conners, Shannon B. ;
Mongodin, Emmanuel F. ;
Johnson, Matthew R. ;
Montero, Clemente I. ;
Nelson, Karen E. ;
Kelly, Robert M. .
FEMS MICROBIOLOGY REVIEWS, 2006, 30 (06) :872-905
[7]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[8]   MicrobesOnline: an integrated portal for comparative and functional genomics [J].
Dehal, Paramvir S. ;
Joachimiak, Marcin P. ;
Price, Morgan N. ;
Bates, John T. ;
Baumohl, Jason K. ;
Chivian, Dylan ;
Friedland, Greg D. ;
Huang, Katherine H. ;
Keller, Keith ;
Novichkov, Pavel S. ;
Dubchak, Inna L. ;
Alm, Eric J. ;
Arkin, Adam P. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D396-D400
[9]   The mechanisms of carbon catabolite repression in bacteria [J].
Deutscher, Josef .
CURRENT OPINION IN MICROBIOLOGY, 2008, 11 (02) :87-93
[10]   Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models [J].
Faria, Jose P. ;
Overbeek, Ross ;
Xia, Fangfang ;
Rocha, Miguel ;
Rocha, Isabel ;
Henry, Christopher S. .
BRIEFINGS IN BIOINFORMATICS, 2014, 15 (04) :592-611