Decoherence in adiabatic quantum computation

被引:72
作者
Amin, M. H. S. [1 ]
Averin, Dmitri V. [2 ]
Nesteroff, James A. [2 ]
机构
[1] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
关键词
probability; quantum computing;
D O I
10.1103/PhysRevA.79.022107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have studied the decoherence properties of adiabatic quantum computation (AQC) in the presence of in general non-Markovian, e.g., low-frequency, noise. The developed description of the incoherent Landau-Zener transitions shows that the global AQC maintains its properties even for decoherence larger than the minimum gap at the anticrossing of the two lowest-energy levels. The more efficient local AQC, however, does not improve scaling of the computation time with the number of qubits n as in the decoherence-free case. The scaling improvement requires phase coherence throughout the computation, limiting the computation time and the problem size n.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Mathematical models of quantum computation [J].
Nishino, T .
NEW GENERATION COMPUTING, 2002, 20 (04) :317-337
[32]   Riemannian Geometry of Quantum Computation [J].
Brandt, Howard E. .
QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 :61-101
[33]   Multiplication algorithm on quantum computation [J].
Chen, CY ;
Hsueh, CC .
FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, :38-45
[34]   Logical paradoxes in quantum computation [J].
de Silva, Nadish .
LICS'18: PROCEEDINGS OF THE 33RD ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 2018, :335-343
[35]   Quantum Computation and Arrows of Time [J].
Argaman, Nathan .
ENTROPY, 2021, 23 (01) :1-8
[36]   Differential geometry of quantum computation [J].
Brandt, Howard E. .
JOURNAL OF MODERN OPTICS, 2008, 55 (19-20) :3403-3412
[37]   Quantum Computation with Abelian Anyons [J].
Seth Lloyd .
Quantum Information Processing, 2002, 1 :13-18
[38]   Quantum computation with linear optics [J].
Fitch, MJ ;
Donegan, MM ;
Jacobs, BC ;
Pittman, TB ;
Franson, JD .
QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 :178-184
[39]   Superposition, entanglement and quantum computation [J].
Forcer, TM ;
Hey, AJG ;
Ross, DA ;
Smith, PGR .
QUANTUM INFORMATION & COMPUTATION, 2002, 2 (02) :97-116
[40]   Quantum Computation with Abelian Anyons [J].
Lloyd, Seth .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :13-18