Decoherence in adiabatic quantum computation

被引:70
作者
Amin, M. H. S. [1 ]
Averin, Dmitri V. [2 ]
Nesteroff, James A. [2 ]
机构
[1] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
关键词
probability; quantum computing;
D O I
10.1103/PhysRevA.79.022107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have studied the decoherence properties of adiabatic quantum computation (AQC) in the presence of in general non-Markovian, e.g., low-frequency, noise. The developed description of the incoherent Landau-Zener transitions shows that the global AQC maintains its properties even for decoherence larger than the minimum gap at the anticrossing of the two lowest-energy levels. The more efficient local AQC, however, does not improve scaling of the computation time with the number of qubits n as in the decoherence-free case. The scaling improvement requires phase coherence throughout the computation, limiting the computation time and the problem size n.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Suppressing Decoherence in Quantum State Transfer with Unitary Operations [J].
Gavreev, Maxim A. ;
Kiktenko, Evgeniy O. ;
Mastiukova, Alena S. ;
Fedorov, Aleksey K. .
ENTROPY, 2023, 25 (01)
[22]   The best of many worlds, or, is quantum decoherence the manifestation of a disposition? [J].
Boge, Florian J. .
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2019, 66 :135-144
[23]   Optical control and decoherence of spin qubits in quantum dots [J].
Machnikowski, P. ;
Grodecka, A. ;
Weber, C. ;
Knorr, A. .
MATERIALS SCIENCE-POLAND, 2008, 26 (04) :851-861
[24]   Decoherence of quantum registers in the weak-coupling limit [J].
Wang, J ;
Ruda, HE ;
Qiao, B .
PHYSICS LETTERS A, 2002, 294 (01) :6-12
[25]   TimeStitch: Exploiting Slack to Mitigate Decoherence in Quantum Circuits [J].
Smith, Kaitlin N. ;
Ravi, Gokul Subramanian ;
Murali, Prakash ;
Baker, Jonathan M. ;
Earnest, Nathan ;
Javadi-Abhari, Ali ;
Chong, Frederic T. .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (01)
[26]   Mathematical models of quantum computation [J].
Tetsuro Nishino .
New Generation Computing, 2002, 20 :317-337
[27]   Introduction to Quantum Computation Reliability [J].
Thornton, Mitchell A. .
2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
[28]   Mathematical models of quantum computation [J].
Nishino, T .
NEW GENERATION COMPUTING, 2002, 20 (04) :317-337
[29]   Quantum computation and cryptography: An overview [J].
Calixto M. .
Natural Computing, 2009, 8 (4) :663-679
[30]   How to Verify a Quantum Computation [J].
Broadbent, Anne .
THEORY OF COMPUTING, 2018, 14