On the nullity of conformal Killing graphs in foliated Riemannian spaces

被引:1
作者
de Lima, Henrique F. [1 ]
de Lima, Joseilson R. [1 ]
Velasquez, Marco A. L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, Paraiba, Brazil
关键词
Conformal Killing vector fields; conformal Killing graphs; r-th mean curvatures; totally geodesic hypersurfaces; index of minimum relative nullity; MEAN-CURVATURE HYPERSURFACES; WARPED PRODUCTS; MANIFOLDS; GEOMETRY;
D O I
10.1007/s00010-013-0203-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with entire conformal Killing graphs, that is, graphs constructed through the flow generated by a complete conformal Killing vector field V on a Riemannian space , and which are defined over an integral leaf of the foliation orthogonal to V. Under a suitable restriction on the norm of the gradient of the function z which determines such a graph I (z) pound, we establish sufficient conditions to ensure that I (z) pound is totally geodesic. Afterwards, when the ambient space has constant sectional curvature, we obtain lower estimates for the index of minimum relative nullity of I (z) pound.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 20 条
[1]  
Aleksandrov AD., 1956, Vestnik Leningrad. Univ, V11, P5
[2]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[3]   A Bernstein-type theorem for Riemannian manifolds with a Killing field [J].
Alias, Luis J. ;
Dajczer, Marcos ;
Ripoll, Jaime .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :363-373
[4]   Constant higher-order mean curvature hypersurfaces in Riemannian spaces [J].
Alias, Luis J. ;
De Lira, Jorge H. S. ;
Malacarne, J. Miguel .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (04) :527-562
[5]  
Alías LJ, 2013, T AM MATH SOC, V365, P591
[6]   The Newton transformation and new integral formulae for foliated manifolds [J].
Andrzejewski, Krzysztof ;
Walczak, Pawel G. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) :103-111
[7]   COMPACT GRAPHS OVER A SPHERE OF CONSTANT SECOND ORDER MEAN CURVATURE [J].
Barros, A. ;
Sousa, P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) :3105-3114
[8]  
Bernstein S., 1910, Ann. Ec. Norm. Sup, V27, P233, DOI [10.24033/asens.621, DOI 10.24033/ASENS.621]
[9]   On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds [J].
Caminha, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (07) :1144-1174
[10]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300