Facilitation of stress-induced phosphorylation of β-amyloid precursor protein family members by X11-like/Mint2 protein

被引:42
作者
Taru, H [1 ]
Suzuki, T [1 ]
机构
[1] Hokkaido Univ, Grad Sch Pharmaceut Sci, Neurosci Lab, Kita Ku, Sapporo, Hokkaido 0600812, Japan
关键词
D O I
10.1074/jbc.M312007200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta-Amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP ( with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 ( with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.
引用
收藏
页码:21628 / 21636
页数:9
相关论文
共 50 条
[1]   Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of β-amyloid [J].
Ando, K ;
Iijima, K ;
Elliott, JI ;
Kirino, Y ;
Suzuki, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :40353-40361
[2]  
Ando K, 1999, J NEUROSCI, V19, P4421
[3]  
Aplin AE, 1996, J NEUROCHEM, V67, P699
[4]   Novel cadherin-related membrane proteins, alcadeins, enhance the X11-like protein-mediated stabilization of amyloid β-protein precursor metabolism [J].
Araki, Y ;
Tomita, S ;
Yamaguchi, H ;
Miyagi, N ;
Sumioka, A ;
Kirino, Y ;
Suzuki, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49448-49458
[5]   Identification of the critical features of a small peptide inhibitor of JNK activity [J].
Barr, RK ;
Kendrick, TS ;
Bogoyevitch, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) :10987-10997
[6]   SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase [J].
Bennett, BL ;
Sasaki, DT ;
Murray, BW ;
O'Leary, EC ;
Sakata, ST ;
Xu, WM ;
Leisten, JC ;
Motiwala, A ;
Pierce, S ;
Satoh, Y ;
Bhagwat, SS ;
Manning, AM ;
Anderson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13681-13686
[7]  
Borg JP, 1996, MOL CELL BIOL, V16, P6229
[8]   The X11α protein slows cellular amyloid precursor protein processing and reduces Aβ40 and Aβ42 secretion [J].
Borg, JP ;
Yang, YN ;
De Taddéo-Borg, M ;
Margolis, B ;
Turner, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14761-14766
[9]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[10]   c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons [J].
Coffey, ET ;
Smiciene, G ;
Hongisto, V ;
Cao, J ;
Brecht, S ;
Herdegen, T ;
Courtney, MJ .
JOURNAL OF NEUROSCIENCE, 2002, 22 (11) :4335-4345