A new method of secant-like for nonlinear equations
被引:7
|
作者:
Zhang Hui
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
Zhang Hui
[1
]
Li De-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
Li De-Sheng
[1
]
Liu Yu-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
Liu Yu-Zhong
[1
]
机构:
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
Iterative method;
Convergence;
Newton's method;
The method of secant;
ITERATIVE METHODS;
NEWTONS METHOD;
2ND-DERIVATIVE-FREE VARIANTS;
FAMILY;
D O I:
10.1016/j.cnsns.2008.11.002
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, a new method for solving nonlinear equations f(x) = 0 is presented. In many literatures the derivatives are used, but the new method does not use the derivatives. Like the method of secant, the first derivative is replaced with a finite difference in this new method. The new method converges not only faster than the method of secant but also Newton's method. The fact that the new method's convergence order is 2.618 is proved, and numerical results show that the new method is efficient. (C) 2008 Elsevier B.V. All rights reserved.
LIANG Kewei HAN Danfu ZHANG Hong ZHU Chengyan Dept of Math Zhejiang Univ Hangzhou China Dept of Information Technology Zhejiang Economic Trade Polytechnic Hangzhou China
论文数: 0引用数: 0
h-index: 0
LIANG Kewei HAN Danfu ZHANG Hong ZHU Chengyan Dept of Math Zhejiang Univ Hangzhou China Dept of Information Technology Zhejiang Economic Trade Polytechnic Hangzhou China
机构:
Department of Mathematical Sciences, University of Memphis, Memphis, 38152, TNDepartment of Mathematical Sciences, University of Memphis, Memphis, 38152, TN
Anastassiou G.A.
Argyros I.K.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematical Sciences, Cameron University, Lawton, 73505, OkDepartment of Mathematical Sciences, University of Memphis, Memphis, 38152, TN
机构:
Inner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R China
Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R ChinaInner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R China
Saheya, B.
Chen, Guo-qing
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R ChinaInner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R China
Chen, Guo-qing
Sui, Yun-kang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R ChinaInner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R China
Sui, Yun-kang
Wu, Cai-ying
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R ChinaInner Mongolia Univ, Coll Math Sci, Hohhot 010021, Peoples R China
机构:
China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
WANG, Haijun
WANG, Qi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
Wuxi Machinery & Electron Higher Profess & Tech S, Wuxi, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China