Perturbation of Linear Forms of Singular Vectors Under Gaussian Noise

被引:32
作者
Koltchinskii, Vladimir [1 ]
Xia, Dong [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
HIGH DIMENSIONAL PROBABILITY VII: THE CARGESE VOLUME | 2016年 / 71卷
关键词
Gaussian noise; Perturbation; Random matrix; Singular vector;
D O I
10.1007/978-3-319-40519-3_18
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let A is an element of R-mxn be a matrix of rank r with singular value decomposition (SVD) A = Sigma(r)(k=1) sigma(k)(u(k) circle times nu(k)) where {sigma(k) , k = 1, . . . , r} are singular values of A (arranged in a non-increasing order) and u(k) is an element of R-m; nu(k) is an element of R-n , k = 1, . . . , r are the corresponding left and right orthonormal singular vectors. Let (A) over tilde = A + X be a noisy observation of A where X is an element of R-mxn is a random matrix with i.i.d. Gaussian entries, X-ij similar to N (0, tau(2)) and consider its SVD (A) over tilde = Sigma(m Lambda n)(k=1) (sigma) over tilde (k)((u) over tilde (k) circle times (nu) over tilde (k)) with singular values (sigma) over tilde (1) >= . . . >= (sigma) over tilde (m Lambda n) and singular vectors (u) over tilde (k,) (nu) over tilde (k) , k = 1, . . . , m Lambda n. The goal of this paper is to develop sharp concentration bounds for linear forms <(u) over tilde (k) , x >, x is an element of R-m and <(nu) over tilde (k) , y >, y is an element of R-n of the perturbed (empirical) singular vectors in the case when the singular values of A are distinct and, more generally, concentration bounds for bilinear forms of projection operators associated with SVD. In particular, the results imply upper bounds of the order O (root log(m+n)/ mVn ) (holding with a high probability) on max(1 <= i <=) (m) vertical bar <(u) over tilde (k) - root 1 + b(k)u(k), e(i)(m)>vertical bar and max(1 <=) j (<=) (n) vertical bar <(nu) over tilde (k) - root 1 + b(k)nu(k), e(j)(n)>vertical bar where b(k) are properly chosen constants characterizing the bias of empirical singular vectors (u) over tilde (k) , (nu) over tilde (k) and {e(i)(m) , i = 1, . . . , m}, {e(j)(m), j = 1, . . . , n} are the canonical bases of R-m, R-n, respectively.
引用
收藏
页码:397 / 423
页数:27
相关论文
共 16 条
[1]  
[Anonymous], 2010, ARXIV PREPRINT ARXIV
[2]   The singular values and vectors of low rank perturbations of large rectangular random matrices [J].
Benaych-Georges, Florent ;
Nadakuditi, Raj Rao .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 :120-135
[3]  
EISENSTAT SC, 1994, SIAM PROC S, P62
[4]  
Huang L., 2009, ADV NEURAL INFORM PR, P705
[5]   FAST COMMUNITY DETECTION BY SCORE [J].
Jin, Jiashun .
ANNALS OF STATISTICS, 2015, 43 (01) :57-89
[6]  
Kannan R., 2009, Spectral algorithms
[7]  
Koltchinskii V., 2016, ANN I H POI IN PRESS
[8]   CONSISTENCY OF SPECTRAL CLUSTERING IN STOCHASTIC BLOCK MODELS [J].
Lei, Jing ;
Rinaldo, Alessandro .
ANNALS OF STATISTICS, 2015, 43 (01) :215-237
[9]   Relative perturbation theory: II. Eigenspace and singular subspace variations [J].
Li, RC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :471-492
[10]  
ORourke Sean, 2013, ARXIV13112657