Coherence tomography with broad bandwidth extreme ultraviolet and soft X-ray radiation

被引:7
作者
Skruszewicz, S. [1 ,2 ]
Fuchs, S. [1 ,2 ]
Abel, J. J. [1 ,2 ]
Nathanael, J. [1 ,2 ]
Reinhard, J. [1 ,2 ]
Roedel, C. [1 ,2 ]
Wiesner, F. [1 ,2 ]
Wuensche, M. [1 ,2 ]
Wachulak, P. [3 ]
Bartnik, A. [3 ]
Janulewicz, K. [3 ]
Fiedorowicz, H. [3 ]
Paulus, G. G. [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Opt & Quantum Elect, Max Wien Pl 1, D-07743 Jena, Germany
[2] Helmholtz Inst Jena, Frobelstieg 3, D-07743 Jena, Germany
[3] Mil Univ Technol, Inst Optoelect, 2 Kaliskiego Str, PL-00980 Warsaw, Poland
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2021年 / 127卷 / 04期
基金
欧盟地平线“2020”;
关键词
XUV; OPTICS; PHASE; OCT;
D O I
10.1007/s00340-021-07586-w
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT's axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Arecchi T., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5857, P278, DOI 10.1117/12.612558
[2]   Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses [J].
Bartnik, A. ;
Fiedorowicz, H. ;
Wachulak, P. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[3]  
Berglund M, 2000, J MICROSC-OXFORD, V197, P268, DOI 10.1046/j.1365-2818.2000.00675.x
[4]  
Born M., 2019, Principles of optics, V7th, DOI 10.1017/CBO9781139644181
[5]   Ultra-high resolution optical coherence tomography for encapsulation quality inspection [J].
Czajkowski, J. ;
Fabritius, T. ;
Ulanski, J. ;
Marszalek, T. ;
Gazicki-Lipman, M. ;
Nosal, A. ;
Sliz, R. ;
Alarousu, E. ;
Prykari, T. ;
Myllyla, R. ;
Jabbour, G. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105 (03) :649-657
[6]  
Drexler W., 2015, Optical coherence tomography Technology and Applications
[7]   MULTIPLE-HARMONIC CONVERSION OF 1064-NM RADIATION IN RARE-GASES [J].
FERRAY, M ;
LHUILLIER, A ;
LI, XF ;
LOMPRE, LA ;
MAINFRAY, G ;
MANUS, C .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1988, 21 (03) :L31-L35
[8]   Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup [J].
Fiedorowicz, H ;
Bartnik, A ;
Jarocki, R ;
Rakowski, R ;
Szczurek, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 2000, 70 (02) :305-308
[9]   RECONSTRUCTION OF AN OBJECT FROM MODULUS OF ITS FOURIER-TRANSFORM [J].
FIENUP, JR .
OPTICS LETTERS, 1978, 3 (01) :27-29
[10]   High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities [J].
Frassetto, F. ;
Trabattoni, A. ;
Anumula, S. ;
Sansone, G. ;
Calegari, F. ;
Nisoli, M. ;
Poletto, L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (10)