41 mW high average power picosecond 177.3 nm laser by second-harmonic generation in KBBF

被引:27
作者
Yang, Feng [1 ,3 ]
Wang, Zhimin [2 ]
Zhou, Yong [1 ,3 ]
Cheng, Xiankun [1 ,3 ]
Xie, Shiyong [1 ,3 ]
Peng, Qinjun [2 ]
Cui, Dafu [2 ]
Zhang, Jingyuan [2 ]
Wang, Xiaoyang
Zhu, Yong
Chen, Chuangtian
Xu, Zuyan [1 ,2 ]
机构
[1] CAS, Inst Phys, Lab Opt Phys, Beijing, Peoples R China
[2] CAS, Tech Inst Phys & Chem, Key Lab Funct Crystal & Laser Technol, RCLPT, Beijing, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear optical crystal; Deep-ultraviolet; KBBF; Second-harmonic generation (SHG); PRISM-COUPLED DEVICE; PHASE-MATCHING CHARACTERISTICS; KBE2BO3F2; CRYSTAL; DEEP-ULTRAVIOLET; HARMONIC-GENERATION; FEMTOSECOND PULSES; LIGHT-SOURCE;
D O I
10.1016/j.optcom.2009.09.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO(4) laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 mu m, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [31] Picosecond 554 nm yellow-green fiber laser source with average power over 1 W
    Petrasiunas, M. J.
    Hussain, M. I.
    Canning, J.
    Stevenson, M.
    Kielpinski, D.
    OPTICS EXPRESS, 2014, 22 (15): : 17716 - 17722
  • [32] Temperature dependence of angular noncritical phase-matched second-harmonic generation of focused laser radiation
    Bondarenko, A. L.
    Grechin, S. G.
    Kochiev, D. G.
    Sharikov, A. N.
    Shcherbakov, I. A.
    LASER PHYSICS LETTERS, 2018, 15 (02)
  • [33] Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition
    Kant, Niti
    Gupta, Devki Nandan
    Suk, Hyyong
    PHYSICS LETTERS A, 2011, 375 (35) : 3134 - 3137
  • [34] Picosecond high-power 213-nm deep-ultraviolet laser generation using ß-BaB2O4 crystal
    Chu, Yuxi
    Zhang, Xudong
    Chen, Binbin
    Wang, Jiazan
    Yang, Junhong
    Jiang, Rui
    Hu, Minglie
    OPTICS AND LASER TECHNOLOGY, 2021, 134
  • [35] High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators
    Bi, Zhuan-Fang
    Rodriguez, AlejandroW.
    Hashemi, Hila
    Duchesne, David
    Loncar, Marko
    Wang, Ke-Ming
    Johnson, Steven G.
    OPTICS EXPRESS, 2012, 20 (07): : 7526 - 7543
  • [36] Efficient diode-end-pumped Yb:CaNb2O6 thin-disk laser at 1003 nm and second-harmonic generation for an emission at 501.5 nm
    Li, J. H.
    Liu, X. H.
    Wu, J. B.
    Zhang, X.
    Li, Y. L.
    Zhang, Y. C.
    Fu, X. H.
    LASER PHYSICS LETTERS, 2012, 9 (03) : 199 - 203
  • [37] 574-647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides
    Fedorova, K. A.
    Sokolovskii, G. S.
    Battle, P. R.
    Livshits, D. A.
    Rafailov, E. U.
    OPTICS LETTERS, 2015, 40 (05) : 835 - 838
  • [38] Two-photon absorption properties of crystalline KNbO3 at 430 nm and efficient high pulse energy blue second-harmonic generation
    Major, A.
    Hutchings, D.
    Langford, N.
    Ferguson, A. I.
    Aitchison, J. S.
    Smith, P. W. E.
    LASER PHYSICS LETTERS, 2009, 6 (06) : 450 - 453
  • [39] Second-harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma
    Singh, Arvinder
    Gupta, Naveen
    LASER AND PARTICLE BEAMS, 2016, 34 (01) : 1 - 10
  • [40] Second-Harmonic Generation of a Short-Laser Pulse From a Gas-Jet Immersed in a Magnetic Field
    Gupta, Devki Nandan
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (01) : 17 - 22