ANOMALY DETECTION FOR TIME SERIES USING VAE-LSTM HYBRID MODEL

被引:0
作者
Lin, Shuyu [1 ]
Clarke, Ronald [2 ]
Birke, Robert [3 ]
Schoenborn, Sandro [3 ]
Trigoni, Niki [1 ]
Roberts, Stephen [1 ]
机构
[1] Univ Oxford, Oxford OX1 2JD, England
[2] Imperial Coll London, London SW7 2AZ, England
[3] ABB Future Labs, Segelhofstr 1K, CH-5404 Baden, Switzerland
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
英国工程与自然科学研究理事会;
关键词
Anomaly Detection; Time Series; Deep Learning; Unsupervised Learning;
D O I
10.1109/icassp40776.2020.9053558
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work, we propose a VAE-LSTM hybrid model as an unsupervised approach for anomaly detection in time series. Our model utilizes both a VAE module for forming robust local features over short windows and a LSTM module for estimating the long term correlation in the series on top of the features inferred from the VAE module. As a result, our detection algorithm is capable of identifying anomalies that span over multiple time scales. We demonstrate the effectiveness of our detection algorithm on five real world problems and find our method outperforms three other commonly used detection methods.
引用
收藏
页码:4322 / 4326
页数:5
相关论文
共 18 条
  • [1] Unsupervised real-time anomaly detection for streaming data
    Ahmad, Subutai
    Lavin, Alexander
    Purdy, Scott
    Agha, Zuha
    [J]. NEUROCOMPUTING, 2017, 262 : 134 - 147
  • [2] An Jinwon, 2015, VARIATIONAL AUTOEN C
  • [3] Ban ThomasA., 1999, 8 C USENIX SECURITY, P12
  • [4] Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder
    Chong, Yong Shean
    Tay, Yong Haur
    [J]. ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 189 - 196
  • [5] Clark R, 2017, AAAI CONF ARTIF INTE, P3995
  • [6] A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data
    Goldstein, Markus
    Uchida, Seiichi
    [J]. PLOS ONE, 2016, 11 (04):
  • [7] Hundman K., 2018, P 24 ACM SIGKDD INT
  • [8] Kawachi Y, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P2366, DOI 10.1109/ICASSP.2018.8462181
  • [9] King DB, 2015, ACS SYM SER, V1214, P1
  • [10] Lin Shuyu, 2019, BALANCING RECONSTRUC