THE GEOMETRY OF FLIP GRAPHS AND MAPPING CLASS GROUPS

被引:18
作者
Disarlo, Valentina [1 ]
Parlier, Hugo [2 ]
机构
[1] Heidelberg Univ, Math Inst, Heidelberg, Germany
[2] Univ Luxembourg, Math Res Unit, L-4365 Esch Zur Alzette, Luxembourg
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Flip graphs; triangulations of surfaces; combinatorial moduli spaces; mapping class groups; TRIANGULATIONS; DIAMETER; SPACE; PART;
D O I
10.1090/tran/7356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The space of topological decompositions into triangulations of a surface has a natural graph structure where two triangulations share an edge if they are related by a so-called flip. This space is a sort of combinatorial Teichmuller space and is quasi-isometric to the underlying mapping class group. We study this space in two main directions. We first show that strata corresponding to triangulations containing a same multiarc are strongly convex within the whole space and use this result to deduce properties about the mapping class group. We then focus on the quotient of this space by the mapping class group to obtain a type of combinatorial moduli space. In particular, we are able to identity how the diameters of the resulting spaces grow in terms of the complexity of the underlying surfaces.
引用
收藏
页码:3809 / 3844
页数:36
相关论文
共 35 条
[1]  
Agol I, 2011, CONTEMP MATH, V560, P1
[2]  
[Anonymous], 1998, YOKOHAMA MATH J
[3]   CONVEXITY OF STRATA IN DIAGONAL PANTS GRAPHS OF SURFACES [J].
Aramayona, J. ;
Lecuire, C. ;
Parlier, H. ;
Shackleton, K. J. .
PUBLICACIONS MATEMATIQUES, 2013, 57 (01) :219-237
[4]  
Aramayona J, 2008, MATH RES LETT, V15, P309
[5]   INJECTIVE MAPS BETWEEN FLIP GRAPHS [J].
Aramayona, Javier ;
Koberda, Thomas ;
Parlier, Hugo .
ANNALES DE L INSTITUT FOURIER, 2015, 65 (05) :2037-2055
[6]   CONSTRUCTING CONVEX PLANES IN THE PANTS COMPLEX [J].
Aramayona, Javier ;
Parlier, Hugo ;
Shackleton, Kenneth J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) :3523-3531
[7]  
Bose P., 2011, Proceedings Computational Geometry, EGC 2011, P29
[8]  
Brown W. G., 1964, Proc. London Math. Soc., V14, P746
[9]  
Cavendish W., 2011, PREPRINT
[10]   GROWTH OF THE WEIL-PETERSSON DIAMETER OF MODULI SPACE [J].
Cavendish, William ;
Parlier, Hugo .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (01) :139-171