A minimum degree condition of fractional (k, m)-deleted graphs

被引:19
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
K-FACTORS; EXISTENCE;
D O I
10.1016/j.crma.2009.09.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n, and let k >= 1 and m >= 1 be two integers. In this paper, we consider the relationship between the minimum degree delta(G) and the fractional (k, m)-deleted graphs. It is proved that if n >= 4k - 5 + 2(2k + 1)m and delta(G) >= n/2, then G is a fractional (k, m)-deleted graph. Furthermore, we show that the minimum degree condition is sharp in some sense. To cite this article: S. Zhou, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1223 / 1226
页数:4
相关论文
共 6 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]   MINIMUM DEGREE OF A GRAPH AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1985, 94 (2-3) :123-127
[3]   Toughness and the existence of fractional k-factors of graphs [J].
Liu, Guizhen ;
Zhang, Lanju .
DISCRETE MATHEMATICS, 2008, 308 (09) :1741-1748
[4]   Fractional (g, f)-factors of graphs [J].
Liu, GZ ;
Zhang, LJ .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) :541-545
[5]  
[YU Jiguo 禹继国], 2006, [数学进展, Advances in Mathematics], V35, P621
[6]  
ZHOU S, ARS COMBIN IN PRESS