Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms

被引:261
作者
Keiner, Jens [1 ]
Kunis, Stefan [2 ]
Potts, Daniel [2 ]
机构
[1] Med Univ Lubeck, D-23560 Lubeck, Germany
[2] Tech Univ Chemnitz, D-09107 Chemnitz, Germany
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2009年 / 36卷 / 04期
关键词
Algorithms; Documentation; Theory; Fast Fourier transforms; approximative algorithms; FAST ALGORITHMS; FAST SUMMATION; GRIDDING RECONSTRUCTION; INTERPOLATION; CONVOLUTION; COMPUTATION;
D O I
10.1145/1555386.1555388
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
NFFT 3 is a software library that implements the nonequispaced fast Fourier transform ( NFFT) and a number of related algorithms, for example, nonequispaced fast Fourier transforms on the sphere and iterative schemes for inversion. This article provides a survey on the mathematical concepts behind the NFFT and its variants, as well as a general guideline for using the library. Numerical examples for a number of applications are given.
引用
收藏
页数:30
相关论文
共 69 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Rapid computation of the discrete Fourier transform [J].
Anderson, C ;
Dahleh, MD .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04) :913-919
[3]   The fast Gauss transform with complex parameters [J].
Andersson, F ;
Beylkin, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :274-286
[4]  
[Anonymous], SAMPL THEORY SIGNAL
[5]   Fast and accurate Polar Fourier transform [J].
Averbuch, A. ;
Coifman, R. R. ;
Donoho, D. L. ;
Elad, M. ;
Israeli, M. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (02) :145-167
[6]   Random sampling of multivariate trigonometric polynomials [J].
Bass, RF ;
Gröcheng, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :773-795
[7]  
Beatson R., 1997, Numerical Mathematics and Scientific Computation, P1
[8]   Rapid gridding reconstruction with a minimal oversampling ratio [J].
Beatty, PJ ;
Nishimura, DG ;
Pauly, JM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (06) :799-808
[9]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[10]   Grids and transforms for band-limited functions in a disk [J].
Beylkin, Gregory ;
Kurcz, Christopher ;
Monzon, Lucas .
INVERSE PROBLEMS, 2007, 23 (05) :2059-2088