Bose-Einstein and Fermi-Dirac distributions in nonextensive Tsallis statistics:: an exact study

被引:28
作者
Aragao-Rêgo, HH
Soares, DJ
Lucena, LS
da Silva, LR
Lenzi, EK
Fa, KS
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59072970 Natal, RN, Brazil
[3] Univ Fed Rio Grande do Norte, Int Ctr Complex Syst, BR-59072970 Natal, RN, Brazil
[4] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[5] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
关键词
Bose-Einstein; Fermi-Dirac; nonextensive; Tsallis statistics;
D O I
10.1016/S0378-4371(02)01330-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalized Bose-Einstein and Fermi-Dirac distributions are analyzed in nonextensive Tsallis statistics by considering the normalized constraints in the effective temperature approach. These distributions are worked in D-dimension by employing a general density of states g(epsilon) proportional to epsilon((D) over bar -1) ((D) over bar = D/2 + D/n and (D) over bar > 0). Thermodynamic functions such as internal energy and average number of particles are also obtained in this context. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 55 条
[1]   Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Renyi-entropy-based theory [J].
Abe, S .
PHYSICA A, 2001, 300 (3-4) :417-423
[2]   Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism [J].
Abe, S .
PHYSICS LETTERS A, 1999, 263 (4-6) :424-429
[3]   Justification of power law canonical distributions based on the generalized central-limit theorem [J].
Abe, S ;
Rajagopal, AK .
EUROPHYSICS LETTERS, 2000, 52 (06) :610-614
[4]   Microcanonical foundation for systems with power-law distributions [J].
Abe, S ;
Rajagopal, AK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :8733-8738
[5]   Classical gas in nonextensive optimal Lagrange multipliers formalism [J].
Abe, S ;
Martínez, S ;
Pennini, F ;
Plastino, A .
PHYSICS LETTERS A, 2001, 278 (05) :249-254
[6]   Nonuniqueness of canonical ensemble theory arising from microcanonical basis [J].
Abe, S ;
Rajagopal, AK .
PHYSICS LETTERS A, 2000, 272 (5-6) :341-345
[7]   Nonextensive thermodynamic relations [J].
Abe, SY ;
Martínez, S ;
Pennini, F ;
Plastino, A .
PHYSICS LETTERS A, 2001, 281 (2-3) :126-130
[8]   Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics [J].
Boghosian, BM .
PHYSICAL REVIEW E, 1996, 53 (05) :4754-4763
[9]   Dynamic approach to the thermodynamics of superdiffusion [J].
Buiatti, M ;
Grigolini, P ;
Montagnini, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3383-3387
[10]   Thermodynamics of anomalous diffusion - Comment [J].
Caceres, MO ;
Budde, CE .
PHYSICAL REVIEW LETTERS, 1996, 77 (12) :2589-2589