Fluid-dynamic and thermo-mechanical analyses of the Monoblock Mitre Bend for the ITER electron cyclotron Upper launcher

被引:2
作者
Mas Sanchez, Avelino [1 ]
Chavan, Rene [2 ]
Dall'Acqua, Davide [3 ]
Gagliardi, Mario [3 ]
Goodman, Timothy [2 ]
Cansino, Jose Pacheco [3 ]
Rodriguez Ordonez, Eduardo [1 ]
Saibene, Gabriella [3 ]
Wouters, Paul [3 ]
机构
[1] Univ Oviedo, Dept Construct & Mfg Engn, E-33203 Gijon, Spain
[2] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[3] Fus Energy, Josep Pla 2,Torres Diagonal Litoral B3, E-08019 Barcelona, Spain
关键词
ITER; ECH; Upper launcher; Mitre Bend; Waveguides; MECHANICAL ANALYSES;
D O I
10.1016/j.fusengdes.2020.112212
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The ITER Electron Cyclotron Heating (ECH) system will be used to counteract magneto-hydrodynamic plasma instabilities by aiming up to 20 MW of mm-wave power at 170 GHz. The primary vacuum boundary at the Electron Cyclotron Upper Launcher (EC UL) extends into the port cell region through eight beamlines, defining the so-called First Confinement System (FCS). Each beamline, designed for the transmission of 1.31 MW, is delimited by the closure plate at the port plug back-end and by a diamond window in the port cell. The FCS essentially consists of a Z-shaped set of straight corrugated waveguides (WG) connected by Mitre Bends (MB) with a nominal inner diameter of 50 mm. Due to the space restrictions, the eight MBs at the last FCS section are grouped into two monoblocks. Each Monoblock Mitre Bend (MBMB) consists of a body with corrugated feedthroughs defining a specific angle for each beamline and four mirrors attached by bolted connection to reflect the mm-wave power. The thermal expansion arising from the ohmic losses, the cooling pressure, the bolt pre-tension and the imposed displacements coming from the connection with the transmission lines are the primary design loads for the MBMBs. The fluid-dynamic analyses performed for both upper and lower MBMBs show that highest temperature takes place in the MB mirrors, reaching a maximum value of 203 degrees C at the beam center. The thermomechanical analyses demonstrate that the peak stress also occurs at this location with a maximum value of 324 MPa. These stresses are categorized and compared with the allowable limits defined in the ASME code, what probes that the current design of both upper and lower MBMBs are able to withstand the loads taking place during the mm-wave normal operation.
引用
收藏
页数:6
相关论文
共 9 条
  • [1] [Anonymous], 2010, ASME Boiler Pressure Vessel Code an International Code. Section VIII, Rules for Construction of Pressure Vessels
  • [2] Campbell J., 2005, ITER MAT PROPERTIES
  • [3] Casal N., 2018, F4E D 25QD28 V51
  • [4] Goodman T., 2019, F4E D 2JUYRJ V11
  • [5] Mechanical analyses of the ITER electron cyclotron upper launcher first confinement system
    Sanchez, Avelino Mas
    Aiello, Gaetano
    Chavan, Rene
    Gagliardi, Mario
    Goodman, Timothy
    Henderson, Mark
    Landis, Jean-Daniel
    Saibene, Gabriella
    Silva, Phillip Santos
    Vaccaro, Alessandro
    [J]. FUSION ENGINEERING AND DESIGN, 2017, 123 : 458 - 462
  • [6] Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher
    Sanchez, Avelino Mas
    Bertizzolo, Robert
    Chavan, Rene
    Gagliardi, Mario
    Goodman, Timothy
    Landis, Jean-Daniel
    Saibene, Gabriella
    Silva, Phillip Santos
    Vaccaro, Alessandro
    [J]. FUSION ENGINEERING AND DESIGN, 2016, 109 : 532 - 538
  • [7] Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system
    Silva, Phillip Santos
    Chavan, Rene
    Gagliardi, Mario
    Goodman, Timothy
    Landis, Jean-Daniel
    Ramseyer, Florian
    Sanchez, Avelino Mas
    Vagnoni, Matteo
    [J]. FUSION ENGINEERING AND DESIGN, 2018, 136 : 650 - 654
  • [8] Nearing final design of the ITER EC H&CD Upper Launcher
    Strauss, D.
    Aiello, G.
    Bertizzolo, R.
    Bruschi, A.
    Casal, N.
    Chavan, R.
    Farina, D.
    Figini, L.
    Gagliardi, M.
    Goodman, T. P.
    Grossetti, G.
    Heemskerk, C.
    Henderson, M. A.
    Kasparek, W.
    Koning, J.
    Landis, J. -D.
    Leichtle, D.
    Meier, A.
    Moro, A.
    Nowak, S.
    Pacheco, J.
    Platania, P.
    Plaum, B.
    Poli, E.
    Ramseyer, F.
    Ronden, D.
    Saibene, G.
    Mas-Sanchez, A.
    Silva, P. Santos
    Sauter, O.
    Scherer, T.
    Schreck, S.
    Sozzi, C.
    Spaeh, P.
    Vagnoni, M.
    Vaccaro, A.
    Weinhorst, B.
    [J]. FUSION ENGINEERING AND DESIGN, 2019, 146 : 23 - 26
  • [9] Worth L., 2019, ITER VACUUM HDB