Predicting Product Distribution of Propene Dimerization in Nanoporous Materials

被引:3
作者
Lin, Yifei Michelle [1 ]
Smit, Berend [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] EPFL, Inst Sci & Ingn Chim, Lab Mol Simulat, Rue Ind 17, CH-1951 Sion, Switzerland
基金
欧洲研究理事会;
关键词
propene dimerization; metal organic frameworks; zeolites; product distribution; Monte Carlo; molecular simulation; METAL-ORGANIC FRAMEWORK; FORCE-FIELD; MOLECULAR SIMULATIONS; SHAPE SELECTIVITY; BINARY-MIXTURES; ADSORPTION; OLIGOMERIZATION; SEPARATION; ZEOLITES; EQUILIBRIA;
D O I
10.1021/acscatal.7b00712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a theoretical framework is developed to explain and predict changes in the product distribution of the propene dimerization reaction, which yields a mixture of C-6 olefin isomers, resulting from the use of different porous materials as catalysts. The MOF-74 class of materials has shown promise in catalyzing the dimerization of propene with high selectivity for valuable linear olefin products. We show that experimentally observed changes in the product distribution can be explained in terms of the contribution of the pores to the free energy of formation, which are directly computed using molecular simulation. Our model is used to screen a library of 118 existing and hypothetical MOF and zeolite structures to study how product distribution can be tuned by changing pore size, shape, and composition of porous materials. Using these molecular descriptors, catalyst properties are identified that increase the selective reaction of linear olefin isomers, which are valued as industrial feedstocks. A pore size commensurate with the size of the desired linear products enhances linear conversion by sterically hindering the branched isomers. Another promising feature is the presence of open metal sites, which interact with the olefin bond to provide favorable binding sites for the linear isomers.
引用
收藏
页码:3940 / 3948
页数:9
相关论文
共 50 条
[41]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101
[42]   Ten Years of Aberration Corrected Electron Microscopy for Ordered Nanoporous Materials [J].
Li, Chengmin ;
Zhang, Qing ;
Mayoral, Alvaro .
CHEMCATCHEM, 2020, 12 (05) :1248-1269
[43]   High-throughput computational screening of nanoporous materials in targeted applications [J].
Ren, Emmanuel ;
Guilbaud, Philippe ;
Coudert, Francois-Xavier .
DIGITAL DISCOVERY, 2022, 1 (04) :355-374
[44]   Heterogenized nickel catalysts for propene dimerization: Support effects on activity and selectivity [J].
de Souza, Michele O. ;
de Souza, Roberto F. ;
Rodrigues, Larissa R. ;
Pastore, Heloise O. ;
Gauvin, Regis M. ;
Gallo, Jean Marcel R. ;
Favero, Cristiano .
CATALYSIS COMMUNICATIONS, 2013, 32 :32-35
[45]   Design of nanoporous materials for trace removal of benzene through high throughput screening [J].
Yuan, Junpeng ;
Liu, Xianglong ;
Li, Min ;
Wang, Hui .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324
[46]   In-Depth Study of Mass Transfer in Nanoporous Materials by Micro-Imaging [J].
Hibbe, Florian ;
van Baten, Jasper M. ;
Krishna, Rajamani ;
Chmelik, Christian ;
Weitkamp, Jens ;
Kaerger, Joerg .
CHEMIE INGENIEUR TECHNIK, 2011, 83 (12) :2211-2218
[47]   Computational discovery of nanoporous materials for energy- and environment-related applications [J].
Cho, Eun Hyun ;
Lyu, Qiang ;
Lin, Li-Chiang .
MOLECULAR SIMULATION, 2019, 45 (14-15) :1122-1147
[48]   Outlook and challenges for hydrogen storage in nanoporous materials [J].
Broom, D. P. ;
Webb, C. J. ;
Hurst, K. E. ;
Parilla, P. A. ;
Gennett, T. ;
Brown, C. M. ;
Zacharia, R. ;
Tylianakis, E. ;
Klontzas, E. ;
Froudakis, G. E. ;
Steriotis, Th. A. ;
Trikalitis, P. N. ;
Anton, D. L. ;
Hardy, B. ;
Tamburello, D. ;
Corgnale, C. ;
van Hassel, B. A. ;
Cossement, D. ;
Chahine, R. ;
Hirscher, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (03) :1-21
[49]   New Horizons for the Physical Chemistry of Nanoporous Materials [J].
Snurr, Randall Q. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (14) :1842-1843
[50]   Concepts for improving hydrogen storage in nanoporous materials [J].
Broom, D. P. ;
Webb, C. J. ;
Fanourgakis, G. S. ;
Froudakis, G. E. ;
Trikalitis, P. N. ;
Hirscher, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) :7768-7779