Cauchy problem for viscous rotating shallow water equations

被引:17
作者
Hao, Chengchun [1 ,2 ]
Hsiao, Ling [1 ]
Li, Hai-Liang [3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscous compressible rotating shallow water system; Cauchy problem; Global well-posedness; Besov spaces; NAVIER-STOKES EQUATIONS; GLOBAL EXISTENCE; DERIVATION; MODEL;
D O I
10.1016/j.jde.2009.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modeling of motions for shallow water with free surface in a rotating sub-domain Marche (2007) [19]. The global. existence of the solution in the space of Besov type is shown for initial data close to a constant equilibrium state away from the vacuum. Unlike the previous analysis about the compressible fluid model without Coriolis forces, see for instance Danchin (2000) [10], Haspot (2009) [16], the rotating effect causes a coupling between two parts of Hodge's decomposition of the velocity vector field, and additional regularity is required in order to carry out the Friedrichs' regularization and compactness arguments. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3234 / 3257
页数:24
相关论文
共 24 条
[1]  
[Anonymous], 1980, J MATH KYOTO U
[2]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[3]  
Bresch D, 2003, C R MECANIQUE, V331
[4]  
BUI AT, 1981, SIAM J MATH ANAL, V12, P229
[5]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[6]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[7]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[8]   ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :443-474
[9]   Long-time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations [J].
Cheng, Bin ;
Tadmor, Eitan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) :1668-1685
[10]   Existence of solutions for compressible fluid models of Korteweg type [J].
Danchin, R ;
Desjardins, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :97-133