Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film

被引:22
|
作者
Xu, Jingjing [1 ]
Xia, Qingbo [1 ,2 ]
Chen, Fangyuan [1 ,2 ]
Liu, Tao [1 ]
Li, Li [1 ,2 ]
Cheng, Xueyuan [1 ,2 ]
Lu, Wei [1 ]
Wu, Xiaodong [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, ILab, Beijing 100864, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
High-voltage Lithium ion batteries; Cyclic performance; Solid electrolyte interphase (SEI); Oxidable additive; Cathode/electrolyte interface; ELECTROCHEMICAL PERFORMANCE; VINYLENE CARBONATE; LINI0.5MN1.5O4; CATHODES; SURFACE; SPINEL; STABILITY; IMPROVEMENT; INTERPHASE; PHOSPHATE; ANODE;
D O I
10.1016/j.electacta.2016.01.138
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The cathode/electrolyte interface stability is the key factor for the cyclic performance and the safety performance of lithium ion batteries. Suppression of consuming key elements in the electrode materials is essential in this concern. In this purpose, we investigate a facile strategy to solve interfacial issue for high-voltage lithium ion batteries by adding an oxidable fluorinated phosphate, Bis(2,2,2-trifluoroethyl) Phosphite (BTFEP), as a sacrificial additive in electrolyte. We demonstrate that BTFEP additive could be oxidized at slightly above 4.28 V which is a relatively lower voltage than that of solvents, and the oxidative products facilitate in-situ forming a stable solid electrolyte interphase (SEI) film on the cathode surface. The results manifest the SEI film validly restrains the generation of HF and the interfacial side reaction between high-voltage charged LiNi0.5Mn1.5O4 (LNMO) and electrolyte, hence, the dissolution of Mn and Ni is effectively suppressed. Finally, the cyclic performance of LNMO after 200 cycles was remarkably improved from 68.4% in blank electrolyte to 95% in 1 wt% BTFEP-adding electrolyte. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:687 / 694
页数:8
相关论文
共 50 条
  • [1] High-Voltage Tolerant Electrolyte for Lithium-Ion Batteries
    Li, Luoqian
    Rao, Mumin
    Chen, Hong
    Liao, Shijun
    PROGRESS IN CHEMISTRY, 2024, 36 (10) : 1456 - 1472
  • [2] (Phenylsulfonyl)acetonitrile as a High-Voltage Electrolyte Additive to Form a Sulfide Solid Electrolyte Interface Film to Improve the Performance of Lithium-Ion Batteries
    Deng, Xiao
    Zuo, Xiaoxi
    Liang, Huiyin
    Zhang, Lengdan
    Liu, Jiansheng
    Nan, Junmin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (19) : 12161 - 12168
  • [3] Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries
    Gao, Han
    Maglia, Filippo
    Lamp, Peter
    Armine, Khalil
    Chen, Zonghai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (51) : 44542 - 44549
  • [4] In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive
    Ruan, Digen
    Chen, Min
    Wen, Xinyang
    Li, Shuqing
    Zhou, Xianggui
    Che, Yanxia
    Chen, Jiakun
    Xiang, Wenjin
    Li, Suli
    Wang, Hai
    Liu, Xiang
    Li, Weishan
    NANO ENERGY, 2021, 90
  • [5] Research on the High-Voltage Electrolyte for Lithium Ion Batteries
    Zhang Lingling
    Ma Yulin
    Du Chunyu
    Yin Geping
    PROGRESS IN CHEMISTRY, 2014, 26 (04) : 553 - 559
  • [6] Solid Electrolyte: the Key for High-Voltage Lithium Batteries
    Li, Juchuan
    Ma, Cheng
    Chi, Miaofang
    Liang, Chengdu
    Dudney, Nancy J.
    ADVANCED ENERGY MATERIALS, 2015, 5 (04)
  • [7] High-Voltage Electrolyte for Lithium-Ion Batteries
    Huang, Guoyong
    Dong, Xi
    Du, Jianwei
    Sun, Xiaohua
    Li, Botian
    Ye, Haimu
    PROGRESS IN CHEMISTRY, 2021, 33 (05) : 855 - 867
  • [8] A Designed Durable Electrolyte for High-Voltage Lithium-Ion Batteries and Mechanism Analysis
    Zou, Yeguo
    Shen, Yabin
    Wu, Yingqiang
    Xue, Hongjin
    Guo, Yingjun
    Liu, Gang
    Wang, Limin
    Ming, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (35) : 7930 - 7936
  • [9] Multifunctional Electrolyte Additive Stabilizes Electrode-Electrolyte Interface Layers for High-Voltage Lithium Metal Batteries
    Liu, Yongchao
    Hong, Liu
    Jiang, Rui
    Wang, Yueda
    Patel, Sawankumar, V
    Feng, Xuyong
    Xiang, Hongfa
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57430 - 57441
  • [10] Interfacial Engineering Using a Thiophene-based Electrolyte Additive for High-Voltage Lithium-Ion Batteries
    Shin, Kwongyo
    Moon, Hyeongyu
    Kang, Gumin
    Shin, Donggyun
    Han, Seonggon
    Hong, Seungbum
    Choi, Nam-Soon
    ENERGY & FUELS, 2025, 39 (09) : 4525 - 4539