Type II phosphatidylinositol 4-kinase β is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP

被引:99
作者
Wei, YJ
Sun, HQ
Yamamoto, M
Wlodarski, P
Kunii, K
Martinez, M
Barylko, B
Albanesi, JP
Yin, HL
机构
[1] Univ Texas, SW Med Ctr, Dept Physiol, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M206860200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type 11 PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum., and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.
引用
收藏
页码:46586 / 46593
页数:8
相关论文
共 31 条
[1]   Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes [J].
Anderson, RA ;
Boronenkov, IV ;
Doughman, SD ;
Kunz, J ;
Loijens, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :9907-9910
[2]   Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics [J].
Audhya, A ;
Foti, M ;
Emr, SD .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (08) :2673-2689
[3]   RECONSTITUTION OF THE TRANSPORT OF PROTEIN BETWEEN SUCCESSIVE COMPARTMENTS OF THE GOLGI MEASURED BY THE COUPLED INCORPORATION OF N-ACETYLGLUCOSAMINE [J].
BALCH, WE ;
DUNPHY, WG ;
BRAELL, WA ;
ROTHMAN, JE .
CELL, 1984, 39 (02) :405-416
[4]   Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments [J].
Balla, A ;
Tuymetova, G ;
Barshishat, M ;
Geiszt, M ;
Balla, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :20041-20050
[5]   Pharmacology of phosphoinositides, regulators of multiple cellular functions [J].
Balla, T .
CURRENT PHARMACEUTICAL DESIGN, 2001, 7 (06) :475-507
[6]   A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans [J].
Barylko, B ;
Gerber, SH ;
Binns, DD ;
Grichine, N ;
Khvotchev, M ;
Südhof, TC ;
Albanesi, JP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (11) :7705-7708
[7]   Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic [J].
Brown, FD ;
Rozelle, AL ;
Yin, HL ;
Balla, T ;
Donaldson, JG .
JOURNAL OF CELL BIOLOGY, 2001, 154 (05) :1007-1017
[8]   G-protein-coupled receptor activation induces the membrane translocation and activation of phosphatidylinositol-4-phosphate 5-kinase Iα by a Rac- and Rho-dependent pathway [J].
Chatah, NEH ;
Abrams, CS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34059-34065
[9]   Endocytosis and signaling: An inseparable partnership [J].
Di Fiore, PP ;
De Camilli, P .
CELL, 2001, 106 (01) :1-4
[10]   PHOSPHATIDYLINOSITOL 4-KINASE - GENE STRUCTURE AND REQUIREMENT FOR YEAST-CELL VIABILITY [J].
FLANAGAN, CA ;
SCHNIEDERS, EA ;
EMERICK, AW ;
KUNISAWA, R ;
ADMON, A ;
THORNER, J .
SCIENCE, 1993, 262 (5138) :1444-1448