Atomic-scale control of graphene magnetism by using hydrogen atoms

被引:563
作者
Gonzalez-Herrero, Hector [1 ,2 ]
Gomez-Rodriguez, Jose M. [1 ,2 ,3 ]
Mallet, Pierre [4 ,5 ]
Moaied, Mohamed [1 ,6 ]
Jose Palacios, Juan [1 ,2 ,3 ]
Salgado, Carlos [1 ]
Ugeda, Miguel M. [7 ,8 ]
Veuillen, Jean-Yves [4 ,5 ]
Yndurain, Felix [1 ,2 ,3 ]
Brihuega, Ivan [1 ,2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
[4] Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
[5] CNRS, Inst NEEL, F-38042 Grenoble, France
[6] Zagazig Univ, Dept Phys, Fac Sci, Zagazig 44519, Egypt
[7] CIC NanoGUNE, Donostia San Sebastian 20018, Spain
[8] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
关键词
GRAPHITE; DEFECTS; SURFACE; STATES; MODEL; EDGE;
D O I
10.1126/science.aad8038
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a similar to 20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
  • [31] Atomic-scale observation of rotational misorientation in suspended few-layer graphene sheets
    Singh, Manoj K.
    Titus, Elby
    Goncalves, Gil
    Marques, Paula A. A. P.
    Bdikin, Igor
    Kholkin, Andrei L.
    Gracio, Jose J. A.
    NANOSCALE, 2010, 2 (05) : 700 - 708
  • [32] Atomic-Scale Modeling for Materials and Chemistry
    Le, Nam Q.
    Domenico, Janna
    Salerno, K. Michael
    Stiles, Christopher D.
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2023, 36 (04): : 431 - 439
  • [33] Energy dissipation in atomic-scale friction
    Hu, Yuan-zhong
    Ma, Tian-bao
    Wang, Hui
    FRICTION, 2013, 1 (01) : 24 - 40
  • [34] Anisotropy Effects in Atomic-Scale Friction
    Gnecco, Enrico
    Fajardo, Oscar Y.
    Pina, Carlos M.
    Mazo, Juan J.
    TRIBOLOGY LETTERS, 2012, 48 (01) : 33 - 39
  • [35] Resonance in Atomic-Scale Sliding Friction
    Duan, Zaoqi
    Wei, Zhiyong
    Huang, Shuyu
    Wang, Yongkang
    Sun, Chengdong
    Tao, Yi
    Dong, Yun
    Yang, Juekuan
    Zhang, Yan
    Kan, Yajing
    Li, Deyu
    Chen, Yunfei
    NANO LETTERS, 2021, 21 (11) : 4615 - 4621
  • [36] Atomic-Scale Simulations of Meteor Ablation
    Guttormsen, Gabrielle
    Fletcher, Alex C.
    Oppenheim, Meers M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
  • [37] Structure-properties relations in graphene derivatives and metamaterials obtained by atomic-scale modeling
    Maroudas, Dimitrios
    Muniz, Andre R.
    Ramasubramaniam, Ashwin
    MOLECULAR SIMULATION, 2019, 45 (14-15) : 1173 - 1202
  • [38] Atomic-scale friction behavior of layered graphene and graphene-like BN materials modulated by interaction potential
    Zhuang, Chunqiang
    Liu, Lei
    AIP ADVANCES, 2017, 7 (08)
  • [39] The physics of atomic-scale friction: Basic considerations and open questions
    Krylov, Sergey Yu.
    Frenken, Joost W. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (04): : 711 - 736
  • [40] Theoretical simulation of atomic-scale friction in atomic force microscopy
    Sasaki, N
    Kobayashi, K
    Tsukada, M
    SURFACE SCIENCE, 1996, 357 (1-3) : 92 - 95