Deep Learning Quadcopter Control via Risk-Aware Active Learning

被引:0
|
作者
Andersson, Olov [1 ]
Wzorek, Mariusz [1 ]
Doherty, Patrick [1 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, SE-58183 Linkoping, Sweden
来源
THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2017年
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern optimization-based approaches to control increasingly allow automatic generation of complex behavior from only a model and an objective. Recent years has seen growing interest in fast solvers to also allow real-time operation on robots, but the computational cost of such trajectory optimization remains prohibitive for many applications. In this paper we examine a novel deep neural network approximation and validate it on a safe navigation problem with a real nano-quadcopter. As the risk of costly failures is a major concern with real robots, we propose a risk-aware resampling technique. Contrary to prior work this active learning approach is easy to use with existing solvers for trajectory optimization, as well as deep learning. We demonstrate the efficacy of the approach on a difficult collision avoidance problem with non-cooperative moving obstacles. Our findings indicate that the resulting neural network approximations are least 50 times faster than the trajectory optimizer while still satisfying the safety requirements. We demonstrate the potential of the approach by implementing a synthesized deep neural network policy on the nano-quadcopter microcontroller.
引用
收藏
页码:3812 / 3818
页数:7
相关论文
共 50 条
  • [1] Risk-Aware Deep Reinforcement Learning for Robot Crowd Navigation
    Sun, Xueying
    Zhang, Qiang
    Wei, Yifei
    Liu, Mingmin
    ELECTRONICS, 2023, 12 (23)
  • [2] Active Traversability Learning via Risk-Aware Information Gathering for Planetary Exploration Rovers
    Endo, Masafumi
    Ishigami, Genya
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 11855 - 11862
  • [3] Robust Risk-Aware Reinforcement Learning
    Jaimungal, Sebastian
    Pesenti, Silvana M.
    Wang, Ye Sheng
    Tatsat, Hariom
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2022, 13 (01): : 213 - 226
  • [4] Risk-Aware Model Predictive Control Enabled by Bayesian Learning
    Li, Yingke
    Lin, Yifan
    Zhou, Enlu
    Zhang, Fumin
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 108 - 113
  • [5] Learning Disturbances Online for Risk-Aware Control: Risk-Aware Flight with Less Than One Minute of Data
    Akella, Prithvi
    Wei, Skylar X.
    Burdick, Joel W.
    Ames, Aaron D.
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [6] Learning Risk-Aware Costmaps via Inverse Reinforcement Learning for Off-Road Navigation
    Triest, Samuel
    Castro, Mateo Guaman
    Maheshwari, Parv
    Sivaprakasam, Matthew
    Wang, Wenshan
    Scherer, Sebastian
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 924 - 930
  • [7] Learning Risk-Aware Quadrupedal Locomotion using Distributional Reinforcement Learning
    Schneider, Lukas
    Frey, Jonas
    Miki, Takahiro
    Hutter, Marco
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 11451 - 11458
  • [8] Risk-Aware Reinforcement Learning Based Federated Learning Framework for IoV
    Chen, Yuhan
    Liu, Zhibo
    Lu, Xiaozhen
    Xiao, Liang
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [9] Robust Deep Reinforcement Learning for Quadcopter Control
    Deshpande, Aditya M.
    Minai, Ali A.
    Kumar, Manish
    IFAC PAPERSONLINE, 2021, 54 (20): : 90 - 95
  • [10] Risk-Aware Control
    Sanger, Terence D.
    NEURAL COMPUTATION, 2014, 26 (12) : 2669 - 2691