Griffith Criterion for Nanoscale Stress Singularity in Brittle Silicon

被引:44
作者
Sumigawa, Takashi [1 ]
Shimada, Takahiro [1 ]
Tanaka, Shuuhei [1 ]
Unno, Hiroki [1 ]
Ozaki, Naoki [1 ]
Ashida, Shinsaku [1 ]
Kitamura, Takayuki [1 ]
机构
[1] Kyoto Univ, Dept Mech Engn & Sci, Nishikyo Ku, Kyoto 6158540, Japan
关键词
fracture mechanics; Griffith criterion; nanocracking; fracture toughness; silicon; SINGLE-CRYSTAL SILICON; FRACTURE-TOUGHNESS; MECHANICAL-PROPERTIES; BENDING STRENGTH; SHARP NOTCHES; CRACK-GROWTH; SI NANOWIRES; PERFORMANCE; GRAPHENE;
D O I
10.1021/acsnano.7b02493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brittle materials such as silicon fail via the crack nucleation and propagation, which is characterized by the singular stress field formed near the crack tip according to Griffith or fracture mechanics theory. The applicability of these continuum-based theories is, however, uncertain and questionable in a nanoscale system due to its extremely small singular stress field of only a few nanometers. Here, we directly characterize the mechanical behavior of a nanocrack via the development of in situ nanomechanical testing using a transmission electron microscope and demonstrate that Griffith or fracture mechanics theory can be applied to even 4 nm stress singularity despite their continuum-based concept. We show that the fracture toughness in silicon nanocomponents is 0.95 +/- 0.07 MPa root m and is independent of the dimension of materials and therefore inherent. Quantum mechanics/atomistic modeling explains and provides insight into these experimental results. This work therefore provides a fundamental understanding of fracture criterion and fracture properties in brittle nanomaterials.
引用
收藏
页码:6271 / 6276
页数:6
相关论文
共 41 条
[1]   Strain scaling for CMOS [J].
Bedell, S. W. ;
Rooz, A. Khakifi ;
Sadana, D. K. .
MRS BULLETIN, 2014, 39 (02) :131-137
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]   SLOW CRACK-GROWTH IN SINGLE-CRYSTAL SILICON [J].
CONNALLY, JA ;
BROWN, SB .
SCIENCE, 1992, 256 (5063) :1537-1539
[4]   Fracture strength of micro- and nano-scale silicon components [J].
DelRio, Frank W. ;
Cook, Robert F. ;
Boyce, Brad L. .
APPLIED PHYSICS REVIEWS, 2015, 2 (02)
[5]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[6]  
Fisher S. B., 1970, Radiation Effects, V5, P239, DOI 10.1080/00337577008235027
[7]   Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon [J].
Fitzgerald, AM ;
Dauskardt, RH ;
Kenny, TW .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) :194-199
[8]   Dissociative Chemisorption of O2 Inducing Stress Corrosion Cracking in Silicon Crystals [J].
Gleizer, Anna ;
Peralta, Giovanni ;
Kermode, James R. ;
De Vita, Alessandro ;
Sherman, Dov .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[9]  
Griffith G.-A., 1921, Philos. Trans. R. Soc. London, V221, P163, DOI [10.1098/rsta.1921.0006, DOI 10.1098/RSTA.1921.0006]
[10]   Giant piezoresistance effect in silicon nanowires [J].
He, Rongrui ;
Yang, Peidong .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :42-46