On the boundedness of solutions to a nonlinear singular oscillator

被引:18
作者
Capietto, Anna [2 ]
Dambrosio, Walter [2 ]
Liu, Bin [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2009年 / 60卷 / 06期
关键词
Singular potential; boundedness; Moser's twist theorem; Aubry-Mather sets; ASYMMETRIC OSCILLATOR; EQUATIONS; RESONANCE; MOTIONS;
D O I
10.1007/s00033-008-8094-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a second order scalar equation of the form x'' + V'(x) = p(t), where p is a pi-perodic function and V is a singular potential. We give sufficient conditions on V, p ensuring that all solutions are bounded; we prove the existence of Aubry-Mather sets as well.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 14 条
[1]   Roots of unity and unbounded motions of an asymmetric oscillator [J].
Alonso, JM ;
Ortega, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :201-220
[2]  
BONHEURE D, SEMINAIRE MATH U CAT, V319
[3]   Oscillations of a forced asymmetric oscillator at resonance [J].
Fabry, C ;
Mawhin, J .
NONLINEARITY, 2000, 13 (03) :493-505
[4]  
Fonda A, 2006, ADV DIFFERENTIAL EQU, V11, P1111
[5]  
Lazer A., 1969, Ann. Mat. Pura Appl, V82, P49, DOI [10.1007/BF02410787, DOI 10.1007/BF02410787]
[6]   QUASI-PERIODIC MOTIONS IN SUPERQUADRATIC TIME-PERIODIC POTENTIALS [J].
LEVI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :43-83
[7]   Boundedness in nonlinear oscillations at resonance [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 153 (01) :142-174
[8]   Boundedness in asymmetric oscillations [J].
Liu, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) :355-373
[9]   Boundedness of solutions for equations with p-Laplacian and an asymmetric nonlinear term [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (01) :73-92
[10]  
MOSER J, 1986, SIAM REV, V28, P459, DOI 10.1137/1028153