A JASTROW CORRELATION FACTOR FOR TWO-DIMENSIONAL PARABOLIC QUANTUM DOTS

被引:28
|
作者
Ciftja, Orion [1 ,2 ]
机构
[1] Prairie View A&M Univ, Dept Phys, Prairie View, TX 77446 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
MODERN PHYSICS LETTERS B | 2009年 / 23卷 / 26期
基金
美国国家科学基金会;
关键词
Quantum dots; theories and models of many-electronic systems; two-dimensional electronic systems; WAVE-FUNCTION; ELECTRONS; ENERGY;
D O I
10.1142/S0217984909021120
中图分类号
O59 [应用物理学];
学科分类号
摘要
One of the standard approaches to calculate the ground-state properties of strongly correlated electronic systems is to use a Jastrow-Slater wavefunction as a starting point. When considering confined electrons in a two-dimensional parabolic quantum dot, one chooses the Slater determinant to be the ground-state wave function of confined independent electrons and the n determines the form of the Jastrow correlation factor in a way that incorporates accurately the spatial correlations of the system. One way to choose a quality Jastrow correlation factor is to consider the two-body problem and search the best possible yet simple approximative solution to such a problem. To achieve this goal, we consider the two-body problem of confined electrons interacting with a Coulomb repulsive potential in zero magnetic field and focus on their relative motion. Based on straight forward theoretical considerations, we suggest a simple two-body Jastrow correlation factor that optimizes very well the overall trial energy. We test the quality of the proposed Jastrow correlation factor by comparing the results to exact numerical diagonalization solutions.
引用
收藏
页码:3055 / 3064
页数:10
相关论文
共 50 条
  • [31] A two-dimensional array of single-hole quantum dots
    van Riggelen, F.
    Hendrickx, N. W.
    Lawrie, W. I. L.
    Russ, M.
    Sammak, A.
    Scappucci, G.
    Veldhorst, M.
    APPLIED PHYSICS LETTERS, 2021, 118 (04)
  • [32] Two-Dimensional Quantum Dots: From Photoluminescence to Biomedical Applications
    Costa, Mariana C. F.
    Echeverrigaray, Sergio G.
    Andreeva, Daria V.
    Novoselov, Kostya S.
    Neto, Antonio H. Castro
    SOLIDS, 2022, 3 (04): : 578 - 602
  • [33] Phononless hopping conduction in two-dimensional layers of quantum dots
    A. I. Yakimov
    A. V. Dvurechenskii
    A. I. Nikiforov
    A. A. Bloshkin
    Journal of Experimental and Theoretical Physics Letters, 2003, 77 : 376 - 380
  • [34] A simple route to tunable two-dimensional arrays of quantum dots
    Pacifico, J
    Gómez, D
    Mulvaney, P
    ADVANCED MATERIALS, 2005, 17 (04) : 415 - +
  • [35] Development of Perovskite Quantum Dots for Two-Dimensional Temperature Sensors
    Zhu, Yanshen
    Buitenhuis, Johan
    Foerster, Beate
    Vetrano, Maria Rosaria
    Koos, Erin
    ACS APPLIED NANO MATERIALS, 2023, 6 (06) : 4661 - 4671
  • [36] Level structure of InAs quantum dots in two-dimensional assemblies
    Steiner, Dov
    Aharoni, Assaf
    Banin, Uri
    Millo, Oded
    NANO LETTERS, 2006, 6 (10) : 2201 - 2205
  • [37] ELECTRON CORRELATION IN A TWO-DIMENSIONAL QUANTUM ELECTRON LIQUID
    THAKUR, JS
    SOLID STATE COMMUNICATIONS, 1986, 57 (04) : 269 - 272
  • [38] Scaling of entanglement at a quantum phase transition for a two-dimensional array of quantum dots
    Wang, JX
    Kais, S
    PHYSICAL REVIEW A, 2004, 70 (02): : 022301 - 1
  • [39] Laser driven impurity states in two-dimensional quantum dots and quantum rings
    Laroze, D.
    Barseghyan, M.
    Radu, A.
    Kirakosyan, A. A.
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 1 - 4
  • [40] Quantum Hall ferromagnet in a two-dimensional electron gas coupled with quantum dots
    Gusev, G. M.
    Sotomayor, N. M.
    Seabra, A. C.
    Quivy, A. A.
    Lamas, T. E.
    Portal, J. C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 504 - 507