Ternary linear codes and quadrics

被引:0
|
作者
Yoshida, Yuri [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Osaka 5998531, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
基金
日本学术振兴会;
关键词
EXTENDABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an [n, k, d](3) code C with gcd (d, 3) = 1, we define a map w(G) from Sigma = PG(k - 1, 3) to the set of weights of codewords of C through a generator matrix G. A t-flat Pi is Sigma called an (i, j)(t) flat if (i, j) = (vertical bar Pi boolean AND F(0)vertical bar, vertical bar Pi boolean AND F(1)vertical bar) , where F(0) = {P is an element of Sigma vertical bar w(G) (P) equivalent to 0 (mod3)}, F(1) - {P is an element of Sigma vertical bar w(G) (P) not equivalent to 0, d (mod3)}. We give geometric characterizations of (i, j)(t) flats, which involve quadrics. As an application to the optimal linear codes problem, we prove the non-existence of a [305, 6, 202](3)code, which is a new result.
引用
收藏
页数:21
相关论文
共 50 条