Ternary linear codes and quadrics

被引:0
|
作者
Yoshida, Yuri [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Osaka 5998531, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
基金
日本学术振兴会;
关键词
EXTENDABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an [n, k, d](3) code C with gcd (d, 3) = 1, we define a map w(G) from Sigma = PG(k - 1, 3) to the set of weights of codewords of C through a generator matrix G. A t-flat Pi is Sigma called an (i, j)(t) flat if (i, j) = (vertical bar Pi boolean AND F(0)vertical bar, vertical bar Pi boolean AND F(1)vertical bar) , where F(0) = {P is an element of Sigma vertical bar w(G) (P) equivalent to 0 (mod3)}, F(1) - {P is an element of Sigma vertical bar w(G) (P) not equivalent to 0, d (mod3)}. We give geometric characterizations of (i, j)(t) flats, which involve quadrics. As an application to the optimal linear codes problem, we prove the non-existence of a [305, 6, 202](3)code, which is a new result.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Linear codes from arcs and quadrics
    Abdukhalikov, Kanat
    Ho, Duy
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (02) : 309 - 329
  • [2] Linear spaces of quadrics and new good codes
    Brouwer, AE
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) : 177 - 180
  • [3] Minimal linear codes from Hermitian varieties and quadrics
    Bonini, Matteo
    Lia, Stefano
    Timpanella, Marco
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (02) : 201 - 210
  • [4] Minimal linear codes from Hermitian varieties and quadrics
    Matteo Bonini
    Stefano Lia
    Marco Timpanella
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 201 - 210
  • [5] Extendability of Ternary Linear Codes
    Tatsuya Maruta
    Designs, Codes and Cryptography, 2005, 35 : 175 - 190
  • [6] New ternary linear codes
    Daskalov, RN
    Gulliver, TA
    Metodieva, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1687 - 1688
  • [7] Extendability of ternary linear codes
    Maruta, T
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 35 (02) : 175 - 190
  • [8] On the minimum length of ternary linear codes
    Maruta, Tatsuya
    Oya, Yusuke
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 407 - 425
  • [9] NEW OPTIMAL TERNARY LINEAR CODES
    GULLIVER, TA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1182 - 1185
  • [10] On the minimum length of ternary linear codes
    Tatsuya Maruta
    Yusuke Oya
    Designs, Codes and Cryptography, 2013, 68 : 407 - 425