Classical Many-Body Time Crystals

被引:55
作者
Heugel, Toni L. [1 ]
Oscity, Matthias [1 ,3 ]
Eichler, Alexander [2 ]
Zilberberg, Oded [1 ]
Chitra, R. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Solid State Phys, CH-8093 Zurich, Switzerland
[3] Fachhsch Nordwestschweiz FHNW, CH-5210 Windisch, Switzerland
基金
瑞士国家科学基金会;
关键词
COHERENT ISING MACHINE;
D O I
10.1103/PhysRevLett.123.124301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete time crystals are a many-body state of matter where the extensive system's dynamics are slower than the forces acting on it. Nowadays, there is a growing debate regarding the specific properties required to demonstrate such a many-body state, alongside several experimental realizations. In this work, we provide a simple and pedagogical framework by which to obtain many-body time crystals using parametrically coupled resonators. In our analysis, we use classical period-doubling bifurcation theory and present a clear distinction between single-mode time-translation symmetry breaking and a situation where an extensive number of degrees of freedom undergo the transition. We experimentally demonstrate this paradigm using coupled mechanical oscillators, thus providing a clear route for time crystal realizations in real materials.
引用
收藏
页数:6
相关论文
共 61 条
  • [1] Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions
    Bartolo, Nicola
    Minganti, Fabrizio
    Casteels, Wim
    Ciuti, Cristiano
    [J]. PHYSICAL REVIEW A, 2016, 94 (03)
  • [2] Floquet quantum criticality
    Berdanier, William
    Kolodrubetz, Michael
    Parameswaran, S. A.
    Vasseur, Romain
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) : 9491 - 9496
  • [3] Symmetry-breaking in the response of the parametrically excited pendulum model
    Bishop, SR
    Sofroniou, A
    Shi, P
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (02) : 257 - 264
  • [4] Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators
    Chan, H. B.
    Stambaugh, C.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [5] Paths of fluctuation induced switching
    Chan, H. B.
    Dykman, M. I.
    Stambaugh, C.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [6] Observation of discrete time-crystalline order in a disordered dipolar many-body system
    Choi, Soonwon
    Choi, Joonhee
    Landig, Renate
    Kucsko, Georg
    Zhou, Hengyun
    Isoya, Junichi
    Jelezko, Fedor
    Onoda, Shinobu
    Sumiya, Hitoshi
    Khemani, Vedika
    von Keyserlingk, Curt
    Yao, Norman Y.
    Demler, Eugene
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 543 (7644) : 221 - +
  • [7] Weakly coupled parametrically forced oscillator networks: existence, stability, and symmetry of solutions
    Danzl, Per
    Moehlis, Jeff
    [J]. NONLINEAR DYNAMICS, 2010, 59 (04) : 661 - 680
  • [8] Dykman M., 2012, Fluctuating Nonlinear Oscillators: From Nanomechanics to Quantum Superconducting Circuits
  • [9] Interaction-induced time-symmetry breaking in driven quantum oscillators
    Dykman, M., I
    Bruder, Christoph
    Loerch, Niels
    Zhang, Yaxing
    [J]. PHYSICAL REVIEW B, 2018, 98 (19)
  • [10] Fluctuational phase-flip transitions in parametrically driven oscillators
    Dykman, MI
    Maloney, CM
    Smelyanskiy, VN
    Silverstein, M
    [J]. PHYSICAL REVIEW E, 1998, 57 (05): : 5202 - 5212