Synergistic function of doping and ligand engineering to enhance the photostability and electroluminescence performance of CsPbBr3 quantum dots

被引:8
|
作者
Chen, Junfei [1 ,2 ]
Shen, Zhaohui [1 ,2 ]
Liu, Pengbo [1 ,2 ]
Sun, Zhengyang [1 ,2 ]
Liu, Jay Guoxu [3 ]
Shen, Chongyu [3 ]
Song, Dandan [1 ,2 ]
Zhao, Suling [1 ,2 ]
Xu, Zheng [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Minist Educ, Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Inst Optoelect Technol, Beijing 100044, Peoples R China
[3] ShineOn Beijing Technol Co Ltd, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbBr3; perovskite; quantum dots; ligand engineering; photostability; light-emitting diodes; electroluminescence; PEROVSKITE NANOCRYSTALS; EFFICIENT; BINDING; FILMS; BLUE;
D O I
10.1088/1361-6528/abfc73
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The photostability issue of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) is one of the key origins for the degradation of their luminescence performance, which hinders their application in lighting and displays. Herein, we report a new method combining doping and ligand engineering, which effectively improves the photostability of CsPbBr3 QDs and the performance of QD light-emitting diodes (QLEDs). In this method, ZnBr2 is doped into CsPbBr3 QDs to reduce surface anion defects; didodecyldimethyl ammonium bromide (DDAB) and tetraoctylammonium bromide (TOAB) hybrid ligands, which have strong adsorption with QDs, are employed to protect the surface and enhance the conductivity of QD layer in QLEDs. The photoluminescence (PL) and transmission electron microscopy measurements prove the effectively improved photostability of CsPbX3 QDs. Moreover, reduced defects and improved conductivity by doping and hybrid ligands treatment also enable the improved electroluminescence performance of CsPbX3 QDs. The maximum luminance and external quantum efficiency of the QLED with optimized CsPbX3 QDs are 3518.9 cd m(-2) and 5.07%, which are 3.6 and 2.1 times than that of the control device, respectively. Combining doping and hybrid ligands makes perovskite QDs have an extremely promising prospect in future applications of high-definition displays, high-quality lighting, as well as solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of Size on the Electronic Structure and Optical Properties of Cubic CsPbBr3 Quantum Dots
    Chen, Qiran
    Song, Zhigang
    Zhang, Daohua
    Sun, Handong
    Fan, Weijun
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2020, 56 (01)
  • [42] Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite quantum dots
    Wang, Yu
    Yang, Yue
    Wang, Peng
    Bai, Xue
    OPTIK, 2017, 139 : 56 - 60
  • [43] Anisotropic electronic coupling in three-dimensional assembly of CsPbBr3 quantum dots
    Enomoto, Kazushi
    Miranti, Retno
    Liu, Jianjun
    Okano, Rinkei
    Inoue, Daishi
    Kim, DaeGwi
    Pu, Yong-Jin
    CHEMICAL SCIENCE, 2024, 15 (32) : 13049 - 13057
  • [44] Green Light-Emitting Devices Based on Perovskite CsPbBr3 Quantum Dots
    Yu, Han
    Tian, Guimin
    Xu, Weiwei
    Wang, Shengwei
    Zhang, Huaikang
    Niu, Jinzhong
    Chen, Xia
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [45] Ultrasmall CsPbBr3 Quantum Dots with Bright and Wide Blue Emissions
    Kong, Xiaobo
    Wu, Yangqing
    Xu, Fan
    Yang, Shikuan
    Cao, Bingqiang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (07):
  • [46] Metallic Nanowire Coupled CsPbBr3 Quantum Dots Plasmonic Nanolaser
    Xing, Di
    Lin, Cheng-Chieh
    Won, Phillip
    Xiang, Rong
    Chen, Tzu-Pei
    Kamal, A. Syazwan A.
    Lee, Yang-Chun
    Ho, Ya-Lun
    Maruyama, Shigeo
    Ko, Seung Hwan
    Chen, Chun-Wei
    Delaunay, Jean-Jacques
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (28)
  • [47] Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots
    Shinde, Aparna
    Gahlaut, Richa
    Mahamuni, Shailaja
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (27) : 14872 - 14878
  • [48] Improved thermal stability of CsPbBr3 quantum dots by ligand exchange and their application to light-emitting diodes
    Sasaki, Hironao
    Kamata, Norihiko
    Honda, Zentaro
    Yasuda, Takeshi
    APPLIED PHYSICS EXPRESS, 2019, 12 (03)
  • [49] Influence of UV irradiation on the luminescence properties of CsPbBr3 perovskite quantum dots and CsPbBr3 perovskite quantum dots/PVDF composite film-for white LED application
    Kamalarasan, V
    Venkateswaran, C.
    NANOTECHNOLOGY, 2024, 35 (50)
  • [50] A Novel Strategy to Enhance the Photostability of InP/ZnSe/ZnS Quantum Dots with Zr Doping
    Cheng, Xunqiang
    Liu, Mingming
    Zhang, Qinggang
    He, Mengda
    Liao, Xinrong
    Wan, Qun
    Zhan, Wenji
    Kong, Long
    Li, Liang
    NANOMATERIALS, 2022, 12 (22)