CAUCHY MATRIX TYPE SOLUTIONS FOR THE NONLOCAL NONLINEAR SCHRODINGER EQUATION

被引:23
作者
Feng, Wei [1 ]
Zhao, Song-Lin [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
local and nonlocal nonlinear Schrodinger equation; AKNS equation; reductions; Cauchy matrix type solutions; INTEGRABLE EQUATIONS; SYLVESTER EQUATION;
D O I
10.1016/S0034-4877(19)30070-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study some Cauchy matrix type solutions for the nonlocal nonlinear Schrodinger equations, including Cauchy matrix type multisoliton solutions and Cauchy matrix type Jordan block solutions. These solutions are obtained from the Cauchy matrix type solutions of Ablowitz-Kaup-Newell-Segur equation through nonlocal reduction. The reduction procedure developed in this paper can apply to other systems which have Cauchy matrix type solutions and admit local and nonlocal reductions.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 16 条
[1]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
Chen J., 2015, J APPL MATH PHYS, V03, P530
[4]   Solutions of Nonlocal Equations Reduced from the AKNS Hierarchy [J].
Chen, Kui ;
Deng, Xiao ;
Lou, Senyue ;
Zhang, Da-jun .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (01) :113-141
[5]   Solutions of the nonlocal nonlinear Schrodinger hierarchy via reduction [J].
Chen, Kui ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2018, 75 :82-88
[6]   LINEARIZATION OF THE KORTEWEG-DEVRIES AND PAINLEVE-II EQUATIONS [J].
FOKAS, AS ;
ABLOWITZ, MJ .
PHYSICAL REVIEW LETTERS, 1981, 47 (16) :1096-1100
[7]   Soliton solutions for the nonlocal nonlinear Schrodinger equation [J].
Huang, Xin ;
Ling, Liming .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05)
[8]   Dark and antidark soliton interactions in the nonlocal nonlinear Schrodinger equation with the self-induced parity-time-symmetric potential [J].
Li, Min ;
Xu, Tao .
PHYSICAL REVIEW E, 2015, 91 (03)
[9]   Nonlocal nonlinear Schrodinger equation and its discrete version: Soliton solutions and gauge equivalence [J].
Ma, Li-Yuan ;
Zhu, Zuo-Nong .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
[10]  
Sylvester J., 1884, CR HEBD ACAD SCI, V99, P115