Cascaded residual U-net for fully automatic segmentation of 3D carotid artery in high-resolution multi-contrast MR images

被引:11
作者
Zhu, Chenglu [1 ]
Wang, Xiaoyan [1 ]
Teng, Zhongzhao [2 ]
Chen, Shengyong [3 ]
Huang, Xiaojie [4 ]
Xia, Ming [1 ]
Mao, Lizhao [1 ]
Bai, Cong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
[2] Univ Cambridge, Univ Dept Radiol, Cambridge CB2 0QQ, England
[3] Tianjin Univ Technol, Comp Sci & Engn, Tianjin 300384, Peoples R China
[4] Zhejiang Univ, Sch Med, Affiliated Hosp 2, Hangzhou 310009, Peoples R China
基金
中国国家自然科学基金;
关键词
segmentation; carotid artery; residual U-net; multi-contrast MRI; high-resolution; CONVOLUTIONAL NEURAL-NETWORKS; PLAQUE; WALL; QUANTIFICATION;
D O I
10.1088/1361-6560/abd4bb
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate and automatic carotid artery segmentation for magnetic resonance (MR) images is eagerly expected, which can greatly assist a comprehensive study of atherosclerosis and accelerate the translation. Although many efforts have been made, identification of the inner lumen and outer wall in diseased vessels is still a challenging task due to complex vascular deformation, blurred wall boundary, and confusing componential expression. In this paper, we introduce a novel fully automatic 3D framework for simultaneously segmenting the carotid artery from high-resolution multi-contrast MR sequences based on deep learning. First, an optimal channel fitting structure is designed for identity mapping, and a novel 3D residual U-net is used as a basic network. Second, high-resolution MR images are trained using both patch-level and global-level strategies, and the two pre-segmentation results are optimized based on structural characteristics. Third, the optimized pre-segmentation results are cascaded with the patch-cropped MR volume data and trained to segment the carotid lumen and wall. Extensive experiments demonstrate the proposed method outperforms the state-of-the-art 3D Unet-based segmentation models.
引用
收藏
页数:17
相关论文
共 53 条
  • [11] Hemorrhage in the atherosclerotic carotid plaque: A high-resolution MRI study
    Chu, BC
    Kampschulte, A
    Ferguson, MS
    Kerwin, WS
    Yarnykh, VL
    O'Brien, KD
    Polissar, NL
    Hatsukami, TS
    Yuan, C
    [J]. STROKE, 2004, 35 (05) : 1079 - 1084
  • [12] Motion Tracking of the Carotid Artery Wall From Ultrasound Image Sequences: a Nonlinear State-Space Approach
    Gao, Zhifan
    Li, Yanjie
    Sun, Yuanyuan
    Yang, Jiayuan
    Xiong, Huahua
    Zhang, Heye
    Liu, Xin
    Wu, Wanqing
    Liang, Dong
    Li, Shuo
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (01) : 273 - 283
  • [13] MRI-based quantification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries
    Groen, Harald C.
    Simons, Lenette
    van den Bouwhuijsen, Quirijn J. A.
    Bosboom, E. Marielle H.
    Gijsen, Frank J. H.
    van der Giessen, Alina G.
    van de Vosse, Frans N.
    Hofman, Albert
    van der Steen, Antonius F. W.
    Witteman, Jacqueline C. M.
    van der Lugt, Aad
    Wentzel, Jolanda J.
    [J]. JOURNAL OF BIOMECHANICS, 2010, 43 (12) : 2332 - 2338
  • [14] Carotid wall volume quantification from magnetic resonance images using deformable model fitting and learning-based correction of systematic errors
    Hameeteman, K.
    van 't Klooster, R.
    Selwaness, M.
    van der Lugt, A.
    Witteman, J. C. M.
    Niessen, W. J.
    Klein, S.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (05) : 1605 - 1623
  • [15] Identity Mappings in Deep Residual Networks
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 630 - 645
  • [16] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [17] MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation
    Ibtehaz, Nabil
    Rahman, M. Sohel
    [J]. NEURAL NETWORKS, 2020, 121 : 74 - 87
  • [18] Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation
    Kamnitsas, K.
    Bai, W.
    Ferrante, E.
    McDonagh, S.
    Sinclair, M.
    Pawlowski, N.
    Rajchl, M.
    Lee, M.
    Kainz, B.
    Rueckert, D.
    Glocker, B.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 450 - 462
  • [19] Presence of external carotid artery plaque independently predicts mortality in patients without internal carotid artery atherosclerosis
    Kim, Esther S. H.
    Marycz, Damien M.
    Archinal, Devon
    Gornik, Heather L.
    Shishehbor, Mehdi H.
    Bartholomew, John R.
    [J]. VASCULAR MEDICINE, 2014, 19 (05) : 351 - 355
  • [20] Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage) imaging
    Liu, Haining
    Sun, Jie
    Hippe, Daniel S.
    Wu, Wei
    Chu, Baocheng
    Balu, Niranjan
    Hatsukami, Thomas
    Yuan, Chun
    [J]. MAGNETIC RESONANCE IMAGING, 2019, 62 : 87 - 93