Multiple positive solutions for a class of Kirchhoff equation on bounded domain

被引:2
作者
Cai, Li [1 ]
Zhang, Fubao [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff equation; Lusternik-Schnirelmann theory;
D O I
10.1080/00036811.2021.1889520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multiple positive solutions of the following Kirchhoff equation {-(a + b integral(Omega)vertical bar del u vertical bar(2)dx) Delta u + lambda u = vertical bar u vertical bar(p epsilon-2)u, in Omega, u = 0, in R-3\Omega, u > 0, in Omega, where epsilon > 0, Omega is a regular bounded domain of R-3, lambda >= 0, a, b > 0, p(epsilon) := 6 epsilon > 4. We obtain the existence of cat(Omega)(Omega) + 1 positive solutions by using the variational methods and Lusternik-Schnirelmann theory.
引用
收藏
页码:5273 / 5288
页数:16
相关论文
共 24 条
[1]   Existence and multiplicity of positive solutions for a class of Kirchhoff Laplacian type problems [J].
Alimohammady, Mohsen ;
Alves, Claudianor O. ;
Amiri, Hassan Kaffash .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
[2]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[3]   On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds [J].
Benci, Vieri ;
Bonanno, Claudio ;
Micheletti, Anna Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) :464-489
[4]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[5]   Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains [J].
Ghimenti, Marco ;
Pagliardini, Dayana .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
[6]   CATEGORY, IN THE SENSE OF LUSTERNIK-SCHNIRELMANN [J].
JAMES, IM .
TOPOLOGY, 1978, 17 (04) :331-348
[7]   Ground-state solutions to Kirchhoff-type transmission problems with critical perturbation [J].
Li, Fuyi ;
Zhang, Ying ;
Zhu, Xiaoli ;
Liang, Zhanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
[8]   Concentration phenomenon of solutions for a class of Kirchhoff-type equations with critical growth [J].
Li, Quanqing ;
Teng, Kaimin ;
Wang, Wenbo ;
Zhang, Jian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
[9]  
Liang, 2018, Z ANGEW MATH PHYS, V69
[10]   Existence and concentration of ground state solutions for a class of Kirchhoff-type problems [J].
Lin, Xiaoyan ;
Wei, Jiuyang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195