Margin CosReid Network for Pedestrian Re-Identification

被引:3
作者
Yun, Xi [1 ]
Ge, Min [1 ]
Sun, Yanjing [1 ]
Dong, Kaiwen [1 ]
Hou, Xiaofeng [2 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Wuxi Voicon Technol CO LTD, 889 Zhenze Rd, Wuxi 214000, Jiangsu, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 04期
基金
中国国家自然科学基金;
关键词
pedestrian re-identification; CNN; softmax loss; PERSON REIDENTIFICATION;
D O I
10.3390/app11041775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a margin CosReid network for effective pedestrian re-identification. Aiming to overcome the overfitting, gradient explosion, and loss function non-convergence problems caused by traditional CNNs, the proposed GBNeck model can realize a faster, stronger generalization, and more discriminative feature extraction task. Furthermore, to enhance the classification ability of the softmax loss function within classes, the margin cosine softmax loss (MCSL) is proposed through a boundary margin introduction to ensure intraclass compactness and interclass separability of the learning depth features and thus to build a stronger metric-based learning model for pedestrian re-identification. The effectiveness of the margin CosReid network was verified on the mainstream datasets Market-1501 and DukeMTMC-reID compared with other state-of-the-art pedestrian re-identification methods.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 60 条
[1]  
Ahmed E, 2015, PROC CVPR IEEE, P3908, DOI 10.1109/CVPR.2015.7299016
[2]  
Bishop C.M., 2006, J ELECTRON IMAGING, V16, P140
[3]   A neural network based approach for sentiment classification in the blogosphere [J].
Chen, Long-Sheng ;
Liu, Cheng-Hsiang ;
Chiu, Hui-Ju .
JOURNAL OF INFORMETRICS, 2011, 5 (02) :313-322
[4]   ABD-Net: Attentive but Diverse Person Re-Identification [J].
Chen, Tianlong ;
Ding, Shaojin ;
Xie, Jingyi ;
Yuan, Ye ;
Chen, Wuyang ;
Yang, Yang ;
Ren, Zhou ;
Wang, Zhangyang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8350-8360
[5]   Beyond triplet loss: a deep quadruplet network for person re-identification [J].
Chen, Weihua ;
Chen, Xiaotang ;
Zhang, Jianguo ;
Huang, Kaiqi .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1320-1329
[6]   Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function [J].
Cheng, De ;
Gong, Yihong ;
Zhou, Sanping ;
Wang, Jinjun ;
Zheng, Nanning .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1335-1344
[7]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694
[8]  
Elsayed GF, 2018, ADV NEUR IN, V31
[9]   Instance Hard Triplet Loss for In-video Person Re-identification [J].
Fan, Xing ;
Jiang, Wei ;
Luo, Hao ;
Mao, Weijie ;
Yu, Hongyan .
APPLIED SCIENCES-BASEL, 2020, 10 (06)
[10]   SphereRelD: Deep hypersphere manifold embedding for person re-identification [J].
Fan, Xing ;
Jiang, Wei ;
Luo, Hao ;
Fei, Mengjuan .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 :51-58