Higher order asymptotic analysis of the Klein-Gordon equation in the non-relativistic limit regime

被引:5
作者
Lu, Yong [1 ,2 ]
Zhang, Zhifei [3 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Klein-Gordon equation; non-relativistic limit; GLOBAL CAUCHY-PROBLEM; GEOMETRIC OPTICS; SPACE;
D O I
10.3233/ASY-171414
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the non-relativistic limit regime. By employing the techniques in geometric optics, we show that the Klein-Gordon equation can be approximated by nonlinear Schrdinger equations. In particular, we show error estimates which are of the same order as the initial error. Our result gives a mathematical verification for some numerical results obtained in [SIAM J. Numer. Anal. 52 (2014), 2488-2511] and [Numer. Math. 120 (2012), 189-229], and offers a rigorous justification for a technical assumption in the numerical studies [SIAM J. Numer. Anal. 52 (2014), 2488-2511].
引用
收藏
页码:157 / 175
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]   A UNIFORMLY ACCURATE MULTISCALE TIME INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON EQUATION IN THE NONRELATIVISTIC LIMIT REGIME [J].
Bao, Weizhu ;
Cai, Yongyong ;
Zhao, Xiaofei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) :2488-2511
[3]   Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime [J].
Bao, Weizhu ;
Dong, Xuanchun .
NUMERISCHE MATHEMATIK, 2012, 120 (02) :189-229
[4]   Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems [J].
Colin, T ;
Lannes, D .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (01) :83-100
[5]  
GINIBRE J, 1989, ANN I H POINCARE-AN, V6, P15
[6]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[7]   Transparent nonlinear geometric optics and Maxwell-Bloch equations [J].
Joly, JL ;
Metivier, G ;
Rauch, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (01) :175-250
[8]  
Lannes D, 1998, ASYMPTOTIC ANAL, V18, P111
[9]  
Lu Y., 2015, MEM SOC MATH FR, V142
[10]   Partially Strong Transparency Conditions and a Singular Localization Method In Geometric Optics [J].
Lu, Yong ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (01) :245-283