Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics

被引:2
作者
Yang, Jianwei [1 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2009年 / 89卷 / 12期
关键词
Two-fluid Euler-Maxwell equations; two-fluid compressible Euler-Poisson equations; non-relativistic limit; asymptotic expansion and convergence; QUASI-NEUTRAL LIMIT; POISSON SYSTEM; CONVERGENCE; MODEL;
D O I
10.1002/zamm.200900267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the convergence of two-fluid time-dependent Euler-Maxwell equations to two-fluid compressible Euler-Poisson equations in a torus via the non-relativistic limit is studied. The local existence of smooth solutions to both systems is proved by using energy estimates for first order symmetrizable hyperbolic systems. For well prepared initial data, the method of asymptotic expansion and energy methods are used to rigorously justify the convergence of the limit. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:981 / 994
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1984, Applied Mathematical Sciences
[2]  
[Anonymous], 1996, Partial Differential Equations: Basic Theory, DOI DOI 10.1007/978-1-4684-9320-7
[3]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[4]   A model hierarchy for ionospheric plasma modeling [J].
Besse, C ;
Degond, P ;
Deluzet, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03) :393-415
[5]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[6]  
BREZIS H, 1995, CR ACAD SCI I-MATH, V321, P953
[7]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[8]   Quasineutral limit of an Euler-Poisson system arising from plasma physics [J].
Cordier, S ;
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :1099-1113
[9]   An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit [J].
Crispel, Pierre ;
Degond, Pierre ;
Vignal, Marie-Helene .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) :208-234
[10]   The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors [J].
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (01) :111-133