Sums of Cantor sets yielding an interval

被引:19
作者
Cabrelli, CA
Hare, KE
Molter, UM
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Cantor set; sums of sets;
D O I
10.1017/S1446788700009058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveira showing that when s is irrational C-a + C-a(s) is an interval if and only if a/(1 -2a) a(s)/(1-2a(s)) greater than or equal to 1.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 12 条
[1]   Cantor sets and numbers with restricted partial quotients [J].
Astels, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :133-170
[2]   ON CENTRAL CANTOR SETS WITH SELF-ARITHMETIC DIFFERENCE OF POSITIVE LEBESGUE MEASURE [J].
BAMON, R ;
PLAZA, S ;
VERA, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :137-146
[3]   AN INEQUALITY, WITH APPLICATIONS TO CANTOR MEASURES AND NORMAL NUMBERS [J].
BROWN, G ;
KEANE, MS ;
MORAN, W ;
PEARCE, CEM .
MATHEMATIKA, 1988, 35 (69) :87-94
[4]  
BROWN G, 1983, J LOND MATH SOC, V28, P531
[5]   Sums of Cantor sets [J].
Cabrelli, CA ;
Hare, KE ;
Molter, UM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :1299-1313
[6]   ON THE SUM AND PRODUCT OF CONTINUED FRACTIONS [J].
HALL, M .
ANNALS OF MATHEMATICS, 1947, 48 (04) :966-993
[7]   ON THE TOPOLOGICAL-STRUCTURE OF THE ARITHMETIC SUM OF 2 CANTOR SETS [J].
MENDES, P ;
OLIVEIRA, F .
NONLINEARITY, 1994, 7 (02) :329-343
[8]  
Moreira CGTD, 2001, ANN MATH, V154, P45
[9]  
NEWHOUSE S, 1980, PROGR MATH, V8, P1
[10]  
PALIS J, 1993, CAMBRIDGE STUD ADV M, V35