Extended conformation of mammalian translation elongation factor 1a in solution

被引:29
作者
Budkevich, TV
Timchenko, AA
Tiktopulo, EI
Negrutskii, BS
Shalak, VF
Petrushenko, ZM
Aksenov, VL
Willumeit, R
Kohlbrecher, J
Serdyuk, IN
El'skaya, AV
机构
[1] Natl Acad Sci, Inst Mol Biol & Genet, UA-03143 Kiev, Ukraine
[2] Russian Acad Sci, Inst Prot Res, Pushchino 142292, Russia
[3] Joint Inst Nucl Res Dubna, Neutron Phys Lab, Dubna, Russia
[4] GKSS Forschungszentrum Geesthacht GmbH, Geesthacht, Germany
[5] Paul Scherrer Inst, Villigen, Switzerland
关键词
D O I
10.1021/bi026495h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The conformation of mammalian elongation factor eEF1A in solution was examined by the small angle neutron scattering and scanning microcalorimetry. We have found that in contrast to the bacterial analogue the eEF1A molecule has no fixed rigid structure in solution. The radius of gyration of the eEF1A molecule (5.2 nm) is much greater than that of prokaryotic EF1A. The specific heat of denaturation is considerably lower for eEF1A than for EF1A, suggesting that the eEF1A conformation is significantly more disordered. Despite its flexible conformation, eEF1A is found to be highly active in different functional tests. According to the neutron scattering data, eEF1A becomes much more compact in the complex with uncharged tRNA. The absence of a rigid structure and the possibility of large conformational change upon interaction with a partner molecule could be important for eEF1A functioning in channeled protein synthesis and/or for the well-known capability of the protein to interact with different ligands besides the translational components.
引用
收藏
页码:15342 / 15349
页数:8
相关论文
共 59 条
[1]   Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα [J].
Andersen, GR ;
Pedersen, L ;
Valente, L ;
Chatterjee, I ;
Kinzy, TG ;
Kjeldgaard, M ;
Nyborg, J .
MOLECULAR CELL, 2000, 6 (05) :1261-1266
[2]   STUDIES ON POLYPEPTIDE-CHAIN-ELONGATION FACTORS FROM AN EXTREME THERMOPHILE, THERMUS-THERMOPHILUS-HB8 .1. PURIFICATION AND SOME PROPERTIES OF THE PURIFIED FACTORS [J].
ARAI, KI ;
OTA, Y ;
ARAI, N ;
NAKAMURA, S ;
HENNEKE, C ;
OSHIMA, T ;
KAZIRO, Y .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1978, 92 (02) :509-519
[3]   HOW MANY EF-TU MOLECULES PARTICIPATE IN AMINOACYL-TRANSFER RNA-BINDING [J].
BENSCH, K ;
PIEPER, U ;
OTT, G ;
SCHIRMER, N ;
SPRINZL, M ;
PINGOUD, A .
BIOCHIMIE, 1991, 73 (7-8) :1045-1050
[4]   CRYSTAL-STRUCTURE OF ACTIVE ELONGATION-FACTOR TU REVEALS MAJOR DOMAIN REARRANGEMENTS [J].
BERCHTOLD, H ;
RESHETNIKOVA, L ;
REISER, COA ;
SCHIRMER, NK ;
SPRINZL, M ;
HILGENFELD, R .
NATURE, 1993, 365 (6442) :126-132
[5]   Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate [J].
Bilgin, N ;
Ehrenberg, M ;
Ebel, C ;
Zaccai, G ;
Sayers, Z ;
Koch, MHJ ;
Svergun, DI ;
Barberato, C ;
Volkov, V ;
Nissen, P ;
Nyborg, J .
BIOCHEMISTRY, 1998, 37 (22) :8163-8172
[6]   Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA [J].
Blackwell, JL ;
Brinton, MA .
JOURNAL OF VIROLOGY, 1997, 71 (09) :6433-6444
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Architecture of the E-coli 70S ribosome [J].
Burkhardt, N ;
Diedrich, G ;
Nierhaus, KH ;
Meerwinck, W ;
Stuhrmann, HB ;
Pedersen, JS ;
Koch, MHJ ;
Volkov, VV ;
Kozin, MB ;
Svergun, DI .
PHYSICA B, 1997, 234 :199-201
[9]   BIOLOGICAL CHARACTERIZATION OF VARIOUS FORMS OF ELONGATION FACTOR-I FROM RABBIT RETICULOCYTES [J].
CARVALHO, MDD ;
CARVALHO, JF ;
MERRICK, WC .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1984, 234 (02) :603-611
[10]   NUCLEOTIDE-SEQUENCE OF RABBIT ELONGATION FACTOR-1-ALPHA CDNA [J].
CAVALLIUS, J ;
MERRICK, WC .
NUCLEIC ACIDS RESEARCH, 1992, 20 (06) :1422-1422