Sub-Laplacians on Sub-Riemannian Manifolds

被引:22
作者
Gordina, Maria [1 ]
Laetsch, Thomas [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Sub-Riemannian manifold; Sub-Laplacian; Hypoelliptic operator; LIE-GROUPS; INEQUALITIES;
D O I
10.1007/s11118-016-9532-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider different sub-Laplacians on a sub-Riemannian manifold M. Namely, we compare different natural choices for such operators, and give conditions under which they coincide. One of these operators is a sub-Laplacian we constructed previously in Gordina and Laetsch (Trans. Amer. Math. Soc., 2015). This operator is canonical with respect to the horizontal Brownian motion; we are able to define this sub-Laplacian without some a priori choice of measure. The other operator is div(omega) grad(H) for some volume form omega on M. We illustrate our results by examples of three Lie groups equipped with a sub-Riemannian structure: SU(2), the Heisenberg group and the affine group.
引用
收藏
页码:811 / 837
页数:27
相关论文
共 15 条
[1]   The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups [J].
Agrachev, Andrei ;
Boscain, Ugo ;
Gauthier, Jean-Paul ;
Rossi, Francesco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2621-2655
[2]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[3]  
Bakry D, 2009, POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, P1
[4]   A Formula for Popp's Volume in Sub-Riemannian Geometry [J].
Barilari, Davide ;
Rizzi, Luca .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 :42-57
[5]  
Baudoin F., 2011, CURVATURE DIMENSION
[6]  
Baudoin F., 2014, CURVATURE DIMENSION
[7]  
Baudoin F., 2017, Transverse Weitzenbock formulas and de Rham cohomology of totally geodesic foliations
[8]   Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2646-2676
[9]  
Boscain U., 2015, ARXIV150300725
[10]  
Driver BK, 2009, J EUR MATH SOC, V11, P941