Biorthogonal Bases of Multiwavelets

被引:0
|
作者
Pleshcheva, E. A. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
multiwavelet; mask; biorthogonal basis; scaling function; multiresolution analysis;
D O I
10.1134/S008154381702016X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the construction of biorthogonal bases of multiwavelets from known bases of multiscaling functions is given. It is similar to the method presented in the author's 2014 paper joint with N.I. Chernykh and is based on the same principle: the construction of multiwavelets based on k multiscaling functions employs an analog of the vector product of vectors in a 2k-dimensional space.
引用
收藏
页码:S175 / S185
页数:11
相关论文
共 50 条
  • [31] Construction of Orthogonal Multiwavelet Bases
    Pleshcheva, E. A.
    Chernykh, N. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S162 - S172
  • [32] Construction of orthogonal multiwavelets with short sequence
    Pan, J
    Jiao, LC
    Fang, YW
    SIGNAL PROCESSING, 2001, 81 (12) : 2609 - 2614
  • [33] Construction of orthogonal multiwavelet bases
    E. A. Pleshcheva
    N. I. Chernykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 162 - 172
  • [34] Construction of orthogonal multiwavelet bases
    Pleshcheva, E. A.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 221 - 230
  • [35] Multiwavelets on local fields of positive characteristic
    Bhat, Mohammad Younus
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 276 - 284
  • [36] BALANCED INTERPOLATORY MULTIWAVELETS WITH MULTIPLICITY r
    Li, Baobin
    Luo, Tiejian
    Peng, Lizhong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (04)
  • [37] The Intelligent Algorithm Concerning Biorthogonal Quaternary Wavelet Wraps
    Wu Xinli
    Yu Yumin
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1476 - 1483
  • [38] Multiresolution analysis and supercompact multiwavelets for surfaces
    Fortes, M. A.
    Moncayo, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2129 - 2149
  • [39] Hermite spline multiwavelets for image modeling
    Turcajova, R
    WAVELET APPLICATIONS V, 1998, 3391 : 46 - 56
  • [40] Biorthogonal quantum mechanics
    Brody, Dorje C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (03)